
The paper is devoted to a passive control problem. The problem of control of plane motions of a two-mass parametric pendulum in a uniform gravitational field is considered. The problem is important for and necessary in software design of automated systems for control of mechanisms. In particular, it can be applied to various modeling problems of pendulum motions of mechanical systems. The pendulum is modeled by two equivalent weightless rods with two equivalent point masses moving along the circle centered at the pivot. The control is carried out by varying continuously the angle between two rods. It is a function that depends on the representative point of the gravity center of pendulum in the phase plane. Two control processes of excitation and damping pendulum near the lower equilibrium position by swing principle are constructed. The problem is resolved by the method of Lyapunov’s functions known from the classical theory of stability. The control is obtained in the form of closed form solution in the class of continuous functions. The obtained results are an important contribution to development of control mechanisms in engineering.
Статья посвящена проблеме синтеза пассивных управлений, решающих задачу об управлении плоских движений двухмассового параметрического маятника в поле силы тяжести. Актуальность исследований определена необходимостью в приборостроении математического конструирования систем управления автоматических механизмов, в частности при исследовании маятниковых движений механических систем. Маятник моделируется двумя одинаковыми невесомыми стержнями с двумя равными точечными массами, двигающимися по окружности вокруг точки закрепления. Управление реализуется путем непрерывного изменения угла между стержнями и является функцией, зависящей от изображающей точки центра масс маятника на фазовой плоскости. Построены два управляющих закона, реализующих процессы раскачивания и затухания маятника в окрестности нижнего положения равновесия по принципу качелей. Задача решена методом функций Ляпунова классической теории устойчивости. Управление получено в виде точного аналитического решения в классе непрерывных функций. Результаты работы могут быть использованы при проектировании систем управления механизмами в технике и приборостроении.
МАЯТНИК, ПОЛОЖЕНИЕ РАВНОВЕСИЯ, ПРИНЦИП КАЧЕЛЕЙ, СТАБИЛИЗИРУЮЩЕЕ УПРАВЛЕНИЕ, МЕТОД ФУНКЦИИ ЛЯПУНОВА, THE METHOD OF LYAPUNOV'S FUNCTIONS
МАЯТНИК, ПОЛОЖЕНИЕ РАВНОВЕСИЯ, ПРИНЦИП КАЧЕЛЕЙ, СТАБИЛИЗИРУЮЩЕЕ УПРАВЛЕНИЕ, МЕТОД ФУНКЦИИ ЛЯПУНОВА, THE METHOD OF LYAPUNOV'S FUNCTIONS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
