Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Современные наукоемк...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Системный анализ алгебраических свойств многомерных геометрических структур

Системный анализ алгебраических свойств многомерных геометрических структур

Abstract

The purpose of work is to continue studies initiated in [1, 2]. In these works was studied problem of the partitioning of the multidimensional structures clasis ln in components of the same clasis. Have been received solutions for n=2. And the studies were initiated for n=3. In the present work studies continued for the n=3 and solutions have been received for n= 4,5,6. It is proved that there are integer solutions for problem of the partitioning of the multidimensional structures ln by the components with the same indicator of the degree n. The minimal number of components by partitioning is determined by the value n, that is,. Have been received a proof of the theorem, asserting that the sum of multidimensional structures clasis ln can be displayed by the only number. That is to the equation, there are integer solutions. As an example there are of numerical values for values n=2,3,4,5.

Целью работы является продолжение исследований, проведенных в [1, 2]. В этих работах исследовалась проблема разделения многомерных структур класса ln на слагаемые того же класса. В итоге, были получены расчётные соотношения для n=2. И начаты исследования для n=3. В настоящей работе исследования продолжены для показателя n=3 и получены результаты для показателей степени n= 4,5,6. Доказано, что при разделении многомерных структур класса ln на слагаемые, с тем же показателем степени минимальное количество слагаемых определяется показателем степени, то есть, соотношением. Сформулирована теорема, утверждающая, что сумма из n многомерных структур класса ln может быть отображена единственной структурой, имеющей тот же показатель степени. То есть, для соотношения вида существуют целочисленные решения. В качестве примера приведены числовые значения решений для значений n=2,3,4,5.

Keywords

МНОГОМЕРНЫЕ ГЕОМЕТРИЧЕСКИЕ СТРУКТУРЫ, РАЗДЕЛЕНИЕ КУБА, СИСТЕМНЫЙ АНАЛИЗ, МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, ГРАФИЧЕСКАЯ МОДЕЛЬ, ТЕОРЕМА ФЕРМА, FERMAT’S THEOREM

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold