Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radio Electronics, C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Быстрый метод выделения обучающих выборок для построения нейросетевых моделей принятия решений по прецедентам

Быстрый метод выделения обучающих выборок для построения нейросетевых моделей принятия решений по прецедентам

Abstract

The problem of training sample forming is solved to automate the construction of neural network models on precedents. The sampling method is proposed. It automatically selects the training and test samples from the original sample without the need for downloading the entire original sample to the computer memory. It processes an initial sample for each one instance with hashing transformation to a onedimensional axis, forming cluster templates on the generalized axis, minimizing their number. This allows to increase the speed of sampling, to reduce the requirements to computing resources and to computer memory and to provide an acceptable level of accuracy of the synthesized models. The developed method does not require multiple passes through the sample, being limited by only three viewing. At the same time the method keeps in a random access memory only the current instance and the generated set of one-dimensional templates, which is minimized by volume. Unlike the methods based on random sampling and cluster analysis the proposed method automatically determines the size of the formed training and test samples without the need for human intervention. Software realizing proposed method is developed. On its basis the practical task of decision-making model building to predict the individual state of the patient with hypertension is resolved.

Решена задача формирования обучающих выборок для автоматизации построения нейросетевых моделей по прецедентам. Предложен метод формирования выборок, который автоматически выделяет из исходной выборки обучающую и тестовую выборки, не требуя загрузки всей исходной выборки в память ЭВМ, осуществляя поэкземплярную обработку исходной выборки с хэширующим преобразованием на одномерную ось, формирует эталоны кластеров на обобщенной оси, минимизируя их число, что позволяет повысить скорость формирования выборок, снизить требования к вычислительным ресурсам и памяти ЭВМ и обеспечить приемлемый уровень точности синтезируемых моделей. Разработанный метод не требует многократных проходов по выборке, ограничиваясь всего тремя просмотрами. При этом метод хранит в оперативной памяти только один текущий экземпляр и набор сформированных одномерных эталонов, который минимизирован по объему. В отличие от методов на основе случайного отбора и кластер-анализа предложенный метод автоматически определяет размер формируемых обучающей и тестовой выборок, не требуя участия человека. Разработано программное обеспечение, реализующее предложенный метод, на основе которого решена практическая задача построения модели принятия решений для индивидуального прогнозирования состояния пациента, больного гипертонией.

Keywords

выборка, формирование выборки, экземпляр, нейронная сеть, индивидуальное прогнозирование, обучение по прецедентам

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold