Powered by OpenAIRE graph
Found an issue? Give us feedback

МОДЕЛЬ МНОГОМЕРНОЙ ДЕФОРМИРУЕМОЙ СПЛОШНОЙ СРЕДЫ ДЛЯ ПРОГНОЗИРОВАНИЯ ДИНАМИКИ БОЛЬШИХ МАССИВОВ ИНДИВИДУАЛЬНЫХ ДАННЫХ

МОДЕЛЬ МНОГОМЕРНОЙ ДЕФОРМИРУЕМОЙ СПЛОШНОЙ СРЕДЫ ДЛЯ ПРОГНОЗИРОВАНИЯ ДИНАМИКИ БОЛЬШИХ МАССИВОВ ИНДИВИДУАЛЬНЫХ ДАННЫХ

Abstract

На основе разработанной авторами ранее модели многомерных сплошных сред в пространствах высокой размерности (более трех) предложена концепция применения этой модели для одной из главных задач, возникающих в теории обработки больших массивов данных прогнозирования динамики изменения кластеров данных. Модель многомерных сплошных сред в пространствах высокой размерности включает в себя интегральные законы сохранения, которые сформулированы для кластеров информационных данных, а также модель кинематики движения и деформации кластеров. Разработана модель деформируемого многомерного кластера, движение которого в многомерном пространстве данных включает в себя поступательное, вращательное движение и однородную деформацию растяжения-сжатия. Сформулирована система дифференциальных тензорных уравнений, описывающих движение деформируемого многомерного кластера во времени. Разработан численный алгоритм решения этой системы дифференциальных уравнений для эллипсоидальной модели многомерного кластера. Рассмотрен пример применения разработанной модели для прогнозирования динамики экономических данных данных о покупках товаров в крупном супермаркете. Приведены результаты прогнозирования данных о покупках различных групп покупателей.

Keywords

МНОГОМЕРНЫЕ СПЛОШНЫЕ СРЕДЫ,БОЛЬШИЕ МАССИВЫ ДАННЫХ,МНОГОМЕРНОЕ ПРОСТРАНСТВО ПРИЗНАКОВ,ЛАГРАНЖЕВЫ КООРДИНАТЫ,ДЕФОРМИРУЕМЫЙ КЛАСТЕР,ЗАКОНЫ СОХРАНЕНИЯ,КЛАСТЕР ДАННЫХ,ПРОГНОЗИРОВАНИЕ,ДИНАМИКА ИЗМЕНЕНИЯ ДАННЫХ,ТЕНЗОР ВРАЩЕНИЯ КЛАСТЕРА

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average