Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

Автоматическая система мета-обучения с поддержкой выбора оптимального алгоритма решения задачи и вычисления оптимальных параметров его функционирования

Автоматическая система мета-обучения с поддержкой выбора оптимального алгоритма решения задачи и вычисления оптимальных параметров его функционирования

Abstract

Актуальность исследования обусловлена необходимостью повышения эффективности работы автоматических систем интеллектуального анализа данных, основанных на мета-обучении. Цель исследования состоит в разработке автоматической системы мета-обучения с поддержкой выбора оптимального алгоритма решения задачи и вычисления оптимальных параметров его функционирования. Методы исследования: индуктивное моделирование, методы статистической обработки результатов. В результате исследования проведена систематизация известных систем мета-обучения на основании выработанных классификационных признаков, учитывающих внутреннюю организацию систем. Сформулированы требования к реализации автоматической системы мета-обучения. Предложен способ построения системы мета-обучения, удовлетворяющей всем сформулированным требованиям и производящей накопление мета-знаний, построение на их основе мета-моделей, выбор оптимального алгоритма из набора доступных и вычисление оптимальных параметров его функционирования. Разработана объектно-ориентированная архитектура программной платформы для реализации любой из систем мета-обучения, представленных в систематизации. Эффективность реализованной автоматической системы мета-обучения с использованием алгоритмов методов группового учета аргументов проверена экспериментально при решении набора задач, относящихся к классу задач прогнозирования временных последовательностей (1428 временных последовательностей из тестового набора, известного под названием «M3

Competition»).The relevance of the work is caused by necessity of increasing efficiency of automatic data mining systems based on meta-learning. The main aim of the study is to design an automatic meta-learning system supporting selection of optimal algorithm for problem solving and calculation of optimal parameters of its functioning. The methods used in the study: inductive modeling, methods of statistical analysis of results. Results: The known meta-learning systems were integrated based on produced classification features taking into account internal structure of systems. The author has stated the requirements for implementation of the automatic meta-learning system and has offered the way to build a meta-learning system satisfying all stated requirements and accumulating meta-knowledge, building meta-models on its basis, selecting optimal algorithm from a set of available ones and calculating optimal parameters of its functioning. The object-oriented architecture of a software framework for implementation of any meta-learning system presented in the systematization was developed. The efficiency of the implemented automatic meta-learning system using algorithms of group method of data handling was experimentally examined being applied to solution of problems related to the short-term time series forecasting (1428 time series from the testing set known as «M3 Competition»).

Keywords

МЕТА-ОБУЧЕНИЕ, МЕТА-ХАРАКТЕРИСТИКИ ДАННЫХ, МЕТА-МОДЕЛЬ, ПРОГРАММНАЯ ПЛАТФОРМА, ОБЪЕКТНО-ОРИЕНТИРОВАННЫЙ АНАЛИЗ И ПРОЕКТИРОВАНИЕ, ПРОГНОЗИРОВАНИЕ ВРЕМЕННЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ, МЕТОД ГРУППОВОГО УЧЕТА АРГУМЕНТОВ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average