
Приводится информация о численном моделировании нестационарных упругих волн в сложных деформируемых областях. Задачи решаются с помощью численного моделирования уравнений волновой теории упругости. На основе метода конечных элементов в перемещениях разработаны алгоритм и комплекс программ для решения линейных плоских двумерных задач, которые позволяют решать сложные задачи при нестационарных динамических воздействиях. При разработке комплекса программ использовался алгоритмический язык Фортран-90. Исследуемая область разбивается по рассматриваемым переменным на конечные элементы первого порядка. В работе рассматривается оценка точности и достоверности результатов численного моделирования волн напряжений в областях сложной формы. Приводится сопоставление с результатами экспериментального, аналитического и численного методов.
Provides information about the numerical simulation of non-stationary elastic waves in complex deformable areas. Problems are solved using numerical modeling of wave equations of the elasticity theory. Based on the finite element method in the movements of the developed algorithm and software package for solving linear flat two-dimensional problems, which allow to solve complex problems under non-stationary dynamic impacts. When developing complex programs used algorithmic language Fortran-90. The study area is divided by the considered variables on the final elements of the first order. This paper considers the evaluation of the accuracy and reliability of results of numerical modeling of stress waves in regions of complex shape. Comparison with experimental, analytical and numerical methods.
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, КОНТУРНОЕ НАПРЯЖЕНИЕ, КРУГЛОЕ ОТВЕРСТИЕ, ФОТОУПРУГОСТЬ, ПОДКРЕПЛЕННОЕ ОТВЕРСТИЕ, ВОЛНОВАЯ ТЕОРИЯ УПРУГОСТИ, ДИНАМИЧЕСКАЯ ТЕОРИЯ УПРУГОСТИ, ДИФРАКЦИЯ, КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ, ПЕРЕМЕЩЕНИЕ, СКОРОСТЬ ПЕРЕМЕЩЕНИЙ, УСКОРЕНИЕ, СЕЙСМИЧЕСКОЕ ВОЗДЕЙСТВИЕ, ФУНКЦИЯ ХЕВИСАЙДА, МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ, КОМПЛЕКС ПРОГРАММ, УЗЛОВЫЕ ТОЧКИ, ЯВНАЯ ДВУХСЛОЙНАЯ СХЕМА
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, КОНТУРНОЕ НАПРЯЖЕНИЕ, КРУГЛОЕ ОТВЕРСТИЕ, ФОТОУПРУГОСТЬ, ПОДКРЕПЛЕННОЕ ОТВЕРСТИЕ, ВОЛНОВАЯ ТЕОРИЯ УПРУГОСТИ, ДИНАМИЧЕСКАЯ ТЕОРИЯ УПРУГОСТИ, ДИФРАКЦИЯ, КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ, ПЕРЕМЕЩЕНИЕ, СКОРОСТЬ ПЕРЕМЕЩЕНИЙ, УСКОРЕНИЕ, СЕЙСМИЧЕСКОЕ ВОЗДЕЙСТВИЕ, ФУНКЦИЯ ХЕВИСАЙДА, МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ, КОМПЛЕКС ПРОГРАММ, УЗЛОВЫЕ ТОЧКИ, ЯВНАЯ ДВУХСЛОЙНАЯ СХЕМА
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
