Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Polythematic Online ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Аск-анализ эффективности работы преподавателя аграрного вуза на основе данных репозитория UCI

Аск-анализ эффективности работы преподавателя аграрного вуза на основе данных репозитория UCI

Abstract

Создание систем искусственного интеллекта является одним из важных и перспективных направлений развития современных информационных технологий. Так как существует множество альтернатив систем искусственного интеллекта, то возникает необходимость оценки качества математических моделей этих систем. В данной работе рассмотрено решение задачи идентификации классов уровней оплаты сотрудников фирмы по их характеристикам. Для достижения поставленной цели необходимы свободный доступ к тестовым исходным данным и методика, которая поможет преобразовать эти данные в форму, которая необходима для работы в системе искусственного интеллекта. Удачным выбором является база данных тестовых задач для систем искусственного интеллекта репозитория UCI. В данной работе использована база данных по эффективности преподавания в течение трех регулярных семестров и двух летних семестров 151 ассистентом преподавателя (TA) назначений в департаменте статистики Университета Висконсин-Мэдисон. При этом наиболее достоверной в данном приложении оказались модели INF4. Достоверность модели в соответствии с L-мерой составила 0,809, что заметно выше, чем достоверность экспертных оценок, которая считается равной около 70%. Для оценки достоверности моделей в АСК-анализе и системе «Эйдос» используется F-критерий Ван Ризбергена и ее нечеткое мультиклассовое обобщение, предложенное проф.Е.В.Луценко

The creation of artificial intelligence systems is one of important and perspective directions of development of modern information technology. As there are many alternatives to artificial intelligence systems, there is a need to evaluate mathematical models of these systems. In this article, we consider a solution of the problem of identifying classes of levels of pay to employees on their characteristics. To achieve this goal it requires free access to test the source data and methodology, which will help to convert the data into the form needed for work in artificial intelligence systems. A good choice is a database of test problems for systems of UCI artificial intelligence repository. In this work we have used data base on teaching effectiveness for three regular semesters and two summer semesters of 151 teaching assistant (TA) assignments at the statistics Department of the University of Wisconsin-Madison. The most reliable in this application was the model of the INF4. The accuracy of the model in accordance with L-measure made up 0,809, which is much higher than the reliability of expert evaluations, which is equal to about 70%. To assess the reliability of the models in the ASC-analysis and in the system of "Eidos" we use F-criterion of van Ritbergen and its fuzzy multiclass generalization proposed by Professor E. V. Lutsenko

Keywords

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ ПРЕПОДАВАТЕЛЯ АГРАРНОГО ВУЗА НА ОСНОВЕ МНОГОКРИТЕРИАЛЬНОГО ПОДХОДА,STUDY OF THE EFFECTIVENESS OF THE WORK,OF TEACHERS OF AN AGRARIAN UNIVERSITY ON THE BASIS OF MULTI-CRITERIA APPROACH

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold