Powered by OpenAIRE graph
Found an issue? Give us feedback

О порядке аппроксимации многомерных систем всплесков

О порядке аппроксимации многомерных систем всплесков

Abstract

Изучаются системы всплесков с произвольным матричным коэффициентом растяжения, вообще говоря, не являющихся фреймами, по которым разложение фреймового типа имеет место в слабом смысле в L2(Rd). Более того, при наличии обнуляющихся моментов до порядка n−1 включительно у всехв сплеск-функций двойственной системы разложение имеет порядок аппроксимации n. Разработан метод построения такихси стем. Библиогр. 12 назв.

For arbitrary matrix dilation, we study wavelet systems which are not a frame generally speaking, but a frame type decomposition with respect to such a system takes place in the weak sense in L2(Rd). Moreover, if all wavelet functions of the dual system have vanishing moments up order n − 1, then the decomposition has approximation order n. A method for the construction such systems is developed.

Keywords

ФРЕЙМЫ ВСПЛЕСКОВ, МАТРИЧНЫЙ КОЭФФИЦИЕНТ РАСТЯЖЕНИЯ, ПОРЯДОК АППРОКСИМАЦИИ, ОБНУЛЯЮЩИЕСЯ МОМЕНТЫ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold