Powered by OpenAIRE graph
Found an issue? Give us feedback

Об аналитическом продолжении кратного степенного ряда с помощью одномерных матричных методов суммирования

Об аналитическом продолжении кратного степенного ряда с помощью одномерных матричных методов суммирования

Abstract

В теории аналитических функций К. Вейерштрасса понятие аналитического элемента (степенного ряда в C, сходящегося в некотором круге) и его аналитического продолжения являются основными. Метод перераз-ложения степенного ряда, предложенный Вейерштрассом, принципиально решающий задачу аналитического продолжения, оказался малоэффективным при конкретном применении. В работах Ж. Адамара, Г. Миттаг-Леффлера, Ле Руа, Линделефа были предложены так называемые методы суммирования, дающие хорошие результаты для аналитического продолжения степенного ряда в случае звездных областей комплексной плоскости. В дальнейшем в работах Н.У. Аракеляна было получено описание областей, в которых восстановление аналитического продолжения аналитического элемента возможно с помощью универсальных матричных методов суммирования, т. е. областей комплексной плоскости, в которых найдется по крайней мере одна бесконечная матрица, «суммирующая» все аналитические элементы с заданным центром. Эти области оказались спиральными относительно некоторой точки и были названы Аракеляном областями эффективной суммируемости. Настоящая работа посвящена аналитическому продолжению кратного степенного ряда в класс областей, обобщающих спиральные. С помощью одномерных матричных методов суммирования степенного ряда строятся многомерные матричные методы суммирования для кратного степенного ряда, позволяющие строить аналитическое продолжение этого ряда в максимальную спиральную область, называемую (m,α)-звездой Миттаг-Леффлера функции f, определяемой этим рядом. При этом апробация построенных многомерных матричных методов суммирования кратного степенного ряда проводится с помощью одномерной геометрической прогрессии.

In the theory of analytic functions of K. Weierstrass the concept of the analytical element (power series in C converging in a circle) and its analytic continuation are the main. The method of power series expansion at another, series proposed by Weierstrass, fundamentally solves the problem of analytic continuation, proved ineffective in a particular application. In the works of Hadamard, Mittag-Leffler, Le Roy, Lindelof the so-called summation methods that give good results for the analytic continuation of power series in the case of the star domains of the complex plane have been proposed. In the works of Arakelian a description of the areas, in which the restoration of the analytic continuation of the analytical element with a fixed center is possible by using the universal matrix methods of summation is received. This work is about the analytical continuation of multiple power series in the class offields of synthesis of spiral. Using one-dimensional matrix methods of summation of power series constructed multidimensional matrix methods of summation for multiple power series, which allows you to construct an analytic continuation of this number in the maximum spiral region called (m,α)-the star of the Mittag-Leffler function f defined by this row. This approbation built multidimensional matrix methods of summation of multiple power series is carried out using one-dimensional geometric progression. That is the domains of the complex plane, there is at least one infinite matrix "summarizing" all analytic elements with a given center. These domains were spiral relative to some point and were named Arakelian domains efficient summability.

Keywords

КРАТНЫЙ СТЕПЕННОЙ РЯД, ЗВЕЗДА МИТТАГ-ЛЕФФЛЕРА, ГЛАВНАЯ ЗВЕЗДА, АНАЛИТИЧЕСКОЕ ПРОДОЛЖЕНИЕ, СУММИРОВАНИЕ КРАТНОГО СТЕПЕННОГО РЯДА, МАТРИЧНЫЕ МЕТОДЫ СУММИРОВАНИЯ, СПИРАЛЬНЫЕ ОБЛАСТИ, ОБЛАСТИ ЭФФЕКТИВНОЙ СУММИРУЕМОСТИ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average