
В статье вводится понятие квазиортогональных матриц (М-матриц, минимаксных матриц), обладающих качеством иметь экстремально малое значение их максимального элемента после нормализации их столбцов или строк (m-норму). Различаются между собой случаи достижения строгого минимума m-нормы у матриц Адамара и локального минимума у обобщенных матриц нечетных и некоторых четных порядков. М-матрицы классифицируются по количеству уровней значений, которые принимают их элементы. Помимо матриц Адамара и Белевича, приводятся примеры нечетных по порядку двух-и трехуровневых матриц Мерсенна и Ферма, а также четных модульно двухуровневых матриц Эйлера, замещающих матрицы Белевича, когда они не существуют. Даются формулы для расчетов уровней М-матриц и характерных весов правой части условия ортогональности их столбцов. Для оценки близости М-матриц к матрицам Адамара вводится понятие приведенной m-нормы (h-нормы), равной единице у матриц Адамара. Приводятся графики h-норм семейства рассматриваемых матриц. Отмечается существование всех матриц Мерсенна и Эйлера нечетных и нечетных порядков, смежных 4. Указывается на проблему в области построения минимаксных матриц на порядках матриц Ферма. Отмечается, что приведенные в работе структурные признаки и формулы для весовых коэффициентов могут бытьположены в основу альтернативных определений исследуемых матриц.
The concept of quasi-orthogonal matrices (M-matrices, minimax matrices) with the quality to have an extremely small value of the maximum element after normalization of their columns or rows is introduced (m-norm). Cases to achieve the strict minimum of m-norm Hadamard matrices and a local minimum generalized Hadamard matrices of odd and even orders are differed. M-matrices by the number of their levels values that take their items are classified. Apart from the Hadamard and Belevich matrices, examples of odd order two-and three-levels matrices Mersenne and Fermat are observed, including even modular duplex Euler matrices replacing matrix Belevich when they do not exist. The formulas to calculate the М-matrices and characteristic weights of the right side of their orthogonal columns condition are described. To assess the proximity of M-matrices to the Hadamard matrices the weighted m-norm (h-norm) is proposed, it’s equal to the unity for the any Hadamard matrix. Histograms h-norms for the family the Hadamard matrices are given. The existence of all Mersenne and Euler matrices for odd and odd orders related 4 are noted. A problem to construct the minimax matrices of Fermat matrix orders is indicated. The structural features and formulas of weighting factors as the basis of alternative definitions of the matrices are noted.
ОРТОГОНАЛЬНЫЕ МАТРИЦЫ,ORTHOGONAL MATRICES,МАТРИЦЫ АДАМАРА,HADAMARD MATRICES,МАТРИЦЫ БЕЛЕВИЧА,BELEVICH MATRICES,МАТРИЦЫ МЕРСЕННА,MERSENNE MATRICES,МАТРИЦЫ ФЕРМА,МАТРИЦЫ ЭЙЛЕРА,EULER MATRICES,М-МАТРИЦЫ,КВАЗИОРТОГОНАЛЬНЫЕ МАТРИЦЫ,АДАМАРОВА НОРМА,HADAMARD NORM,FERMAT MATRICES,М-MATRICES,QUASI-MATRICES
ОРТОГОНАЛЬНЫЕ МАТРИЦЫ,ORTHOGONAL MATRICES,МАТРИЦЫ АДАМАРА,HADAMARD MATRICES,МАТРИЦЫ БЕЛЕВИЧА,BELEVICH MATRICES,МАТРИЦЫ МЕРСЕННА,MERSENNE MATRICES,МАТРИЦЫ ФЕРМА,МАТРИЦЫ ЭЙЛЕРА,EULER MATRICES,М-МАТРИЦЫ,КВАЗИОРТОГОНАЛЬНЫЕ МАТРИЦЫ,АДАМАРОВА НОРМА,HADAMARD NORM,FERMAT MATRICES,М-MATRICES,QUASI-MATRICES
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
