Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Управление большими ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ОЦЕНКА ВЕРОЯТНОСТИ РЕДКИХ СОБЫТИЙ В ПОВЕДЕНИИ ТОЛПЫ

ОЦЕНКА ВЕРОЯТНОСТИ РЕДКИХ СОБЫТИЙ В ПОВЕДЕНИИ ТОЛПЫ

Abstract

Исследуется предложенная в [2] модель поведения толпы, которая является обобщением модели конформного порогово-го коллективного поведения М. Грановеттера [13] на случай неопределённости относительно значений порогов агентов. Вероятность события, состоящего в выходе системы из некоторого множества состояний (т.е. в так называемом возбуждении толпы), оценивается при помощи асимптотиче-ского результата, полученного в [8]. Теоретические оценки типа больших уклонений уточняются при помощи численных оценок, полученных методом статистических испытаний. Полученные результаты дают возможность оценить надёж-ность обеспечения невозбуждения толпы в тех случаях, когда вероятности событий слишком малы для применения метода статистических испытаний. Приведены рекомендации по выбору параметров, обеспечивающих заданную вероятность выхода системы из множества заданных состояний.

We developе a collective behavior model proposed in [2]. The model is a generalization of the M. Granovetter’s conformity threshold behavior model for the case of uncertainty in agents’ threshold values. We estimate the probability of exit of a system from a given set of states (i.e. in mob excitation) using an asymptot-ic result derived in [8]. Theoretical estimations of large deviations type are refined using numerical estimations obtained with the help of statistical simulations. Obtained results allow us to estimate stability of excitation prevention in the cases when the probabilities of events are too small for using statistical simulations. We give recommendations on the choice of parameters which guarantee a given probability threshold of exit of the system from a given set of states.

Keywords

МОДЕЛЬ ГРАНОВЕТТЕРА,КОНФОРМНОЕ КОЛЛЕК-ТИВНОЕ ПОВЕДЕНИЕ,УПРАВЛЕНИЕ ТОЛПОЙ,БОЛЬШИЕ УКЛОНЕНИЯ,СТАТИСТИЧЕСКИЕ ИСПЫТАНИЯ,M. GRANOVETTER'S MODEL,CONFORMITY COLLECTIVE BE-HAVIOR,MOB CONTROL,LARGE DEVIATIONS,STATISTICAL SIMULATIONS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold