Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Вероятностная сегментация малоконтрастных движущихся оптических объектов

Вероятностная сегментация малоконтрастных движущихся оптических объектов

Abstract

A new probabilistic method of improving low-contrast and small sized objects reliable detection on the images with hardly formalized background, under the conditions of full a priori uncertainty is considered. The notion of the Chernoffs bound in the case of an objects brightness and background arbitrary ratio basing on more peculiar Markov Random Field model and statistical approaches of classification and detection of objects is widened. The proposed dynamic segmentation allows forming binary fields with signs of objects motion on the gray or colour image sequence that for measuring parameters of motion in real time could be used.

Рассмотрен новый метод обнаружения движения объектов относительно фона на видеоизображениях, использующий условные вероятностные характеристики обнаружения. В основе реализованного метода использовалась расширенная модель Марковских полей и критерий Байеса, чувствительность и точность которых основывается на границах Чернова, понятие которых расширено до двумерных границ. Модификация статистической модели позволила обнаруживать незначительные перемещения маломерных объектов на фоне с совпадающими распределениями яркости.

Keywords

СЕГМЕНТАЦИЯ, МАРКОВСКИЕ СЛУЧАЙНЫЕ ПОЛЯ, ГРАНИЦА ЧЕРНОВА, КРИТЕРИЙ БАЙЕСА, УСЛОВНАЯ ВЕРОЯТНОСТЬ, АПРИОРНАЯ НЕОПРЕДЕЛЕННОСТЬ, CHERNOFF'S BOUND

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average