
We study a one-dimensional large-N U (N) gauge theory on a circle as a toy model of higher dimensional Yang-Mills theories. We nd a new class of saddle point solutions in this theory. These solutions are characterized by the expectation values of the Polyakov loop operators, which wind the circle different times. We nd two evidences that these solutions appear as intermediate states in certain dynamical processes. One is from a numerical calculation and another is from the dual gravity. The similar solutions exist in a wide class of SU (N) and U (N) gauge theories on S1 including QCD and pure YangMills theories in various dimensions if N >= 3.
Исследована одномерная U(N) теория на окружности для большого N в качестве модели теорий Янга-Миллса в пространствах высоких размерностей. Найден новый класс решений для седловой точки. Найдено два подтверждения того, что эти решения возникают как промежуточные состояния в определенных динамических процессах. Аналогичные решения существуют в широком классе калибровочных теорий SU(N) и U(N), включая КХД и чистые теории Янга-Миллса в различных измерениях, если N >= 3.
КАЛИБРОВОЧНЫЕ ТЕОРИИ, ТЕОРИЯ ЯНГА-МИЛЛСА, ГРАВИТАЦИЯ
КАЛИБРОВОЧНЫЕ ТЕОРИИ, ТЕОРИЯ ЯНГА-МИЛЛСА, ГРАВИТАЦИЯ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
