
The article covers the problem of including credit history data into the credit risk assessment system. The method of combining estimates is proposed. The estimates are obtained with the aid of two scorings, one is based on the social parameters of the applicant, the second one is based on the credit history data. The effectiveness of the proposed method is shown by example of the regional retail Bank.
Рассматривается проблема включения данных о кредитной истории заемщика в систему оценки риска по кредитной заявке. Предложена методика совмещения оценок, полученных с помощью двух скорингов: скоринга, основанного на социальных параметрах заемщика, и скоринга, основанного на кредитной истории. Оценена эффективность предлагаемой методики на примере регионального розничного банка.
КРЕДИТНЫЙ РИСК, КРЕДИТНЫЙ СКОРИНГ, СКОРИНГ БЮРО КРЕДИТНЫХ ИСТОРИЙ, КОЭФФИЦИЕНТ ДЖИНИ, КРИТЕРИЙ КОЛМОГОРОВА-СМИРНОВА
КРЕДИТНЫЙ РИСК, КРЕДИТНЫЙ СКОРИНГ, СКОРИНГ БЮРО КРЕДИТНЫХ ИСТОРИЙ, КОЭФФИЦИЕНТ ДЖИНИ, КРИТЕРИЙ КОЛМОГОРОВА-СМИРНОВА
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
