Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Непараметрическая оценка кривой регрессии в условиях больших выборок

Непараметрическая оценка кривой регрессии в условиях больших выборок

Abstract

The technique of construction of a nonparametric regression in the conditions of training samples of large volume is offered. Model synthesis is based on decomposition of initial statistical data and the analysis of probabilistic characteristics of received random variables sets. Asymptotic properties of a nonparametric regression are investigated and results of computing experiment are considered. Association of nonparametric regression properties on an amount of sampling intervals of values of an random variable and volume of input datas is established. Comparison of approximating properties of offered model and a traditional nonparametric regression is spent. The results of researches are important to the solution of problems of a confidential estimation of a probability density and a regression curves.

Предлагается методика построения непараметрической регрессии в условиях обучающих выборок большого объема. Синтез модели основывается на декомпозиции исходных статистических данных и анализе вероятностных характеристик получаемых множеств случайных величин. Исследуются асимптотические свойства непараметрической регрессии и рассматриваются результаты вычислительного эксперимента. Устанавливается зависимость свойств непараметрической регрессии от количества интервалов дискретизации значений случайной величины и объёма исходных данных. Проводится сравнение аппроксимационных свойств предлагаемой модели и традиционной непараметрической регрессии. Результаты исследований имеют важное значение при решении задач доверительного оценивания плотности вероятности и кривой регрессии.

Keywords

НЕПАРАМЕТРИЧЕСКАЯ РЕГРЕССИЯ, ПЛОТНОСТЬ ВЕРОЯТНОСТИ, РЕГРЕССИОННАЯ ОЦЕНКА, АППРОКСИ-МАЦИОННЫЕ СВОЙСТВА, МЕТОДЫ ДИСКРЕТИЗАЦИИ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average