
Consider the modulated synchronous twice stochastic flow of events, which rate is piecewise constant random process X(t) with two states: Xt, X2 (Xt > X2 ). The time when process X(t) is staying in the i-th state has exponential probability density function with a parameter a{, i = 1,2. During the time random interval when X(t) = X { there is a Poisson flow with the rate X{, i = 1,2. A state transition of process X(t) occurs at the moment of arrival of a Poisson flow event, moreover, the passing from the first to the second state is realized with probability p, the passing from the second to the first state is realized with probability q. The flow functions in conditions of dead time, which is one of the falsifying factors of the state and the parameter estimation of the flow. After each registered event there is some time of fixed duration T (dead time), during which another flow events is inaccessible for observation. Consider non-extendable dead time. Such time is all events, which happen during the dead time interval without its prolongation. When the duration of the dead time period finishes, the first happened event creates the dead time period of duration T again, and etc. Note that for the flow, which functions in dead time conditions, events are observable if they did not get into the dead time interval. For the flow, which functions in dead time absence, all events are observable. One of confounding factor by the flow state and parameter estimation is the dead time of recording device, which is generated by the observable flow of events. All other events occurred during the dead time interval are not accessible for observation. The main purpose of this paper is to estimate the dead time T. On the base of the maximum likelihood function method, the solution of the problem is obtained. It is shown that the likelihood function L(T | т(1),...,x(k)) reaches its maximum at the point T = xm = min Tk (k = 1, n). So, the solution of optimization problem is the dead time estimator T = xm.
Рассматривается модулированный синхронный дважды стохастический поток событий. Поток функционирует в условиях непродлевающегося мертвого времени, т.е. после каждого зарегистрированного события наступает время фиксированной длительности, в течение которого другие события исходного модулированного синхронного потока недоступны наблюдению. Полагается, что длительность мертвого времени неизвестная величина. Методом максимального правдоподобия решается задача об оценке длительности мертвого времени по наблюдениям за моментами наступления событий рассматриваемого потока.
МОДУЛИРОВАННЫЙ СИНХРОННЫЙ ПОТОК СОБЫТИЙ,НЕПРОДЛЕВАЮЩЕЕСЯ МЕРТВОЕ ВРЕМЯ,ФУНКЦИЯ ПРАВДОПОДОБИЯ,ОЦЕНКА МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ,ДЛИТЕЛЬНОСТЬ МЕРТВОГО ВРЕМЕНИ,MODULATED SYNCHRONOUS FLOW,DEAD TIME,THE LIKELIHOOD FUNCTION,THE MAXIMUM LIKELIHOOD FUNCTION ESTIMATION,DEAD TIME DURATION
МОДУЛИРОВАННЫЙ СИНХРОННЫЙ ПОТОК СОБЫТИЙ,НЕПРОДЛЕВАЮЩЕЕСЯ МЕРТВОЕ ВРЕМЯ,ФУНКЦИЯ ПРАВДОПОДОБИЯ,ОЦЕНКА МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ,ДЛИТЕЛЬНОСТЬ МЕРТВОГО ВРЕМЕНИ,MODULATED SYNCHRONOUS FLOW,DEAD TIME,THE LIKELIHOOD FUNCTION,THE MAXIMUM LIKELIHOOD FUNCTION ESTIMATION,DEAD TIME DURATION
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
