
Для частных классов сильносвязных орграфов получены достаточные условия примитивности и оценки экспонентов, которые выражены через числа Фробени-уса. Показано, что во многих случаях полученные оценки экспонента орграфа существенно лучше известных оценок.
Sufficient conditions for primitiveness of some su-perconnected digraphs and estimations for exponents of these digraphs are obtained using Frobenius's numbers. It is shown that these estimations are the best in many cases.
ЧИСЛО ФРОБЕНИУСА, ПРИМИТИВНЫЙ ГРАФ, ЭКСПОНЕНТ ГРАФА, FROBENIUS''S NUMBER
ЧИСЛО ФРОБЕНИУСА, ПРИМИТИВНЫЙ ГРАФ, ЭКСПОНЕНТ ГРАФА, FROBENIUS''S NUMBER
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
