
Статья посвящена актуальной проблеме оценки сложных инвестиционных проектов в условиях риска и неопределенности. Рассматриваются основные методы учета рисков и подробно описываются их основные недостатки. В качестве альтернативного метода автором предлагается использование теории нечетких множеств, которая в последнее время становится все более популярна среди специалистов различного профиля. В статье показано, что теория нечетких множеств является одной из наиболее эффективных математических теорий, направленных на обработку неопределенной информации и во многом интегрирующей известные подходы и методы. Также автором была предложена математическая модель для расчета величины рисков инвестиционных проектов на основе теории нечеткости.
This article is consecrated on topical issues of the complicated capital spending projects valuation under risk and uncertainty. Also in this article considered main methods of risks tracking, and their central failures described in details. As an alternative method author offers using fuzzy sets theory, which became very popular recently among specialists of various prof. In this article is shown that fuzzy sets theory is one of the most effective mathematical theories, which directed to fuzzy information processing and in large measure integrates known approaches and methods. Also author offers numerical scheme for calculation of the amount of risks of capital spending projects at the nebulosity theory basis.
ИНВЕСТИЦИИ, ОЦЕНКА СТОИМОСТИ, НЕЧЕТКИЕ МНОЖЕСТВА, УЧЕТ РИСКОВ, ДИСКОНТИРОВАНИЕ
ИНВЕСТИЦИИ, ОЦЕНКА СТОИМОСТИ, НЕЧЕТКИЕ МНОЖЕСТВА, УЧЕТ РИСКОВ, ДИСКОНТИРОВАНИЕ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
