
Статья посвящена проблеме идентификации нейро-нечетких моделей структуры ANFIS. Исследуется применение алгоритма параметрической идентификации нейро-нечетких моделей на основе псевдообращения и линейно-нелинейного соотношения. Анализируются вопросы построения моделей для обучающих множеств, содержащих большой объем данных
The article is devoted to problem of identification of neuro-fuzzy models with ANFIS structure. Application of the algorithm based on linear-nonlinear correlation for parameters identification of neuro-fuzzy models is investigated. Issues of models building for training datasets of large amounts are analyzed
НЕЙРО-НЕЧЕТКОЕ МОДЕЛИРОВАНИЕ,НЕЙРОСТРУКТУРНЫЕ МОДЕЛИ,БОЛЬШИЕ ОБЪЕМЫ ДАННЫХ,NEURO-FUZZY MODELING,NEUROSTRUCTURAL MODELS,DATA OF LARGE AMOUNTS
НЕЙРО-НЕЧЕТКОЕ МОДЕЛИРОВАНИЕ,НЕЙРОСТРУКТУРНЫЕ МОДЕЛИ,БОЛЬШИЕ ОБЪЕМЫ ДАННЫХ,NEURO-FUZZY MODELING,NEUROSTRUCTURAL MODELS,DATA OF LARGE AMOUNTS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
