Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Сопряженные уравнения в задачах управления концентрацией неконсервативной примеси

Сопряженные уравнения в задачах управления концентрацией неконсервативной примеси

Abstract

His paper considers the problem of optimal control of water pollution sources in the water courses. We give statement of the optimal control problems and algorithms based on the use of adjoint equations for their numerical solution. Two problems are considered: the regulation of constant in time pointwise sources of conservative impurities, and also control of pollutant discharges for case system of non-conservative substances. The advantage of the first linear mathematical model is a reasonable computational complexity, almost without restrictions on the complexity of the description of the fluid dynamics and transport of pollutants. For the second non-linear problem, an iterative solution algorithm based on the gradient projection method based on the quasi-linear system of reaction-convection-diffusion equation is given

Рассматриваются задачи об оптимальном управлении мощностями источников загрязняющих примесей в водное русло. Приведены постановки задач оптимального управления и алгоритмы их численного решения, основанные на использовании сопряженных уравнений. Рассмотрены две модели: для консервативной примеси и для системы неконсервативных примесей. Достоинством первой линейной математической модели является приемлемая вычислительная сложность, практически без ограничения на сложность описания гидродинамики водоема и переноса примесей. Для второй нелинейной задачи, основанной на квазилинейной системе уравнений реакции-конвекции-диффузии, предложен итерационный алгоритм решения на основе метода проекции градиента.

Keywords

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ, СОПРЯЖЕННЫЕ УРАВНЕНИЯ, СИСТЕМА УРАВНЕНИЙ РЕАКЦИИ-КОНВЕКЦИИ-ДИФФУЗИИ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average