
Почти контактные метрические многообразия обладают богатой дифференциально-геометрической структурой. Исследование почти С(Х) -многообразий в своих работах начали Д. Янсен и Л. Ванхекке. Тензор кривизны имеет определяющее значение для почти С(А) -многообразий, а тождества кривизны, которым удовлетворяет этот тензор, очень важны для понимания дифференциально-геометрических свойств почти С(А) -многообразий. Полученные в данной статье тождества, выражающие дополнительные свойства симметрии тензора римановой кривизны почти С(Х) -многообразий, позволяют решить актуальную задачу классификации почти С(А) -многообразий, а именно, выделить классы класса CR 1 и CR 2 почти С(Л) -многообразий. В работе получены следующие тождества кривизны почти С(А) -многообразия: 1) R{X,^ = -M 2X; 2) R\p 2X,0 2Yp 2Z + R\p 2X,0YpZ + R\pX,<& 2YpZ-R(<&X,<&Y)& 2Z = = X{0 2X(0 2Y,0 2Z) + 0 2X(0Y,0Z) + 0X(0 2Y,0Z)-0X(0Y,0 2Z -Ф 2Y(Ф 2X,Ф 2Z)-Ф 2Y(ФX,ФZ)-ФY(Ф 2X,ФZ) + ФY(ФX,Ф 2Z)}. На основе данных тождеств выделены почти С(А) -многообразия класса CR 1 и класса CR 2. Определение 3. Почти С(Л) -многообразие называется многообразием класса CR1, если его тензор римановой кривизны удовлетворяет условию Определение 4. Назовем почти С (А) )-многообразие многообразием класса СЯ_, если его тензор римановой кривизны для \/X,Y,Ze X(М) удовлетворяет условию R(p 2X^ 2Y)3> 2Z + R({I> 2X^Y)3>Z + Rfax^ 2Y)3>Z-RfaX^Y^ 2Z = 0. Дана локальная характеризация выделенных классов, а именно доказаны следующие утверждения. Теорема 2. Почти С(А) -многообразие является многообразием класса CR 1 тогда и только тогда, когда оно является косимплектическим многообразием, т.е. когда оно локально эквивалентно произведению келерова многообразия на вещественную прямую. Теорема 3. Почти С(л) -многообразие, размерности больше 3, является многообразием класса CR 2 тогда и только тогда, когда оно является косимплектическим многообразием, т.е. когда оно локально эквивалентно произведению келерова многообразия на вещественную прямую.
Almost contact metric manifolds have a rich differential geometric structures. The paper deals with almost contact metric manifolds, which are almost manifolds. D. Janssen and L. Vanhecke began investigated of almost manifolds. The curvature tensor is crucial for almost manifolds and curvature identities satisfied by this tensor are very important for understanding the differential geometric properties of almost -manifolds. The results obtained in this paper identities expressing additional symmetry properties of the Riemannian curvature tensor of almost -manifolds, allow to solve an actual problem of classifying almost -manifolds, namely, to distinguish the class CR1 and CR2-class almost manifolds. We obtain the following identities curvature almost manifold: 1) ; 2). On the basis of identities allocated almost manifold of class and class CR1 CR2. Definition 3. Almost manifold is called a variety of class CR1, if the Riemann curvature tensor satisfies the condition,. Definition 4. We say almost manifold manifold of class CR2, if the Riemann curvature tensor satisfies the condition for. In this work the local characterization of the classes, namely, we prove the following assertion. Theorem 2. Nearly manifold is a manifold of class CR1 if and only if it is cosymplectic diversity, i.e., it is locally equivalent to the product of a Kahler manifold on the real line. Theorem 3. Almost manifold of dimension greater than 3, a manifold CR2 class if and only if it is cosymplectic diversity, i.e., it is locally equivalent to the product of a Kahler manifold on the real line.
ПОЧТИ С(Л) -МНОГООБРАЗИЯ, КОСИМПЛЕКТИЧЕСКИЕ МНОГООБРАЗИЯ, С(Л) -МНОГООБРАЗИЯ, ТЕНЗОР РИМАНОВОЙ КРИВИЗНЫ, САСАКИЕВО МНОГООБРАЗИЕ, МНОГООБРАЗИЕ КЕНМОЦУ
ПОЧТИ С(Л) -МНОГООБРАЗИЯ, КОСИМПЛЕКТИЧЕСКИЕ МНОГООБРАЗИЯ, С(Л) -МНОГООБРАЗИЯ, ТЕНЗОР РИМАНОВОЙ КРИВИЗНЫ, САСАКИЕВО МНОГООБРАЗИЕ, МНОГООБРАЗИЕ КЕНМОЦУ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
