
В работе рассматривается распространение вихревых лазерных пучков ехр{ίμφ} в параболическом оптическом волокне. Зависимость комплексной амплитуды от поперечных координат и расстояния вдоль оптической оси описывается результатом действия интегрального оператора распространения в параболической среде на распределение амплитуды входного пучка. Этот оператор является аналогом интеграла Френеля, описывающего распространение параксиальных лазерных пучков в однородной среде. Результат действия интегрального оператора на вихревой пучок аналитически можно представить двумя способами. В первом случае ядром аналитического выражения для амплитуды является вырожденная гипергеометрическая функция. Вторым способом представления является композиция бесконечного числа мод Гаусса Лагерра, которые являются собственными модами параболического волокна. Полученные аналитические выражения проверяются с помощью численного моделирования с использованием интегрального оператора и метода распространения световых пучков через тонкие линзы (реализован с использованием быстрого преобразования Фурье). Результаты численного моделирования согласуются с результатами вычислений аналитических выражений с точностью до погрешности метода.
In this work, we discuss the propagation of the laser vortex beams ехр{ ίμφ } in a parabolic fiber. The relationship between the complex amplitude and the transverse coordinates and the distance on the optical axis is described as the integral operator of propagation in a parabolic medium acting on the input beam amplitude distribution. This integral is analogous to the Fresnel integral that describes the propagation of paraxial laser beams in a uniform medium. The result of action of the integral operator onto the vortex beam can be analytically represented in two ways. In the first case, the kernel of the analytical expression for the amplitude is given by a degenerate hypergeometric function. In the second case, the amplitude is represented as a composition of an infinite number of Gauss-Laguerre modes, which are eigenmodes of the parabolic fiber. The analytical relations derived are verified by numerical modeling with use of the integral operator and the method for propagating the light beams through thin lenses, which relies on the fast Fourier transform. The results of the numerical modeling and the analytical calculations agree within the method's accuracy.
ВИХРЕВЫЕ ЛАЗЕРНЫЕ ПУЧКИ, МОДЫ ГАУССА-ЛАГЕРРА, ПАРАБОЛИЧЕСКОЕ ОПТИЧЕСКОЕ ВОЛОКНО, МЕТОД РАСПРОСТРАНЕНИЯ СВЕТОВЫХ ПУЧКОВ, ПАРАКСИАЛЬНЫЙ ИНТЕГРАЛЬНЫЙ ОПЕРАТОР РАСПРОСТРАНЕНИЯ
ВИХРЕВЫЕ ЛАЗЕРНЫЕ ПУЧКИ, МОДЫ ГАУССА-ЛАГЕРРА, ПАРАБОЛИЧЕСКОЕ ОПТИЧЕСКОЕ ВОЛОКНО, МЕТОД РАСПРОСТРАНЕНИЯ СВЕТОВЫХ ПУЧКОВ, ПАРАКСИАЛЬНЫЙ ИНТЕГРАЛЬНЫЙ ОПЕРАТОР РАСПРОСТРАНЕНИЯ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
