
Differential equations of motion for a bar are provided in this paper. The bar is exposed to the applied force that intensifies as the time progresses. The condition substantiating the trans-versal inertia force is identified using the equations. On top of the emerging inertia force, brief high-speed stress increases the yield stress of the material.The external force is accompanied by the eccentricity. Therefore, linear dimensions of the bar and its eccentricity make plastic behaviour possible both in compressed and stretched areas of the rod sections. Patterns of distribution of plastic deformations (one-sided and double-sided yield) are generated using the equations of motion for each case. Cauchy problems are supplemented by the incoming conditions according to the principle of continuity of displacement and velocity.The criterion of stability loss is a condition when the variation of the exterior torque equals to the variation of the interior torque. At the same time, the variation of a longitudinal force must be equal to zero. Having completed a series of transformations, the author obtains the stability loss functional. It is calculated simultaneously with the motion equation. When the functional is equal to zero, the bearing capacity is exhausted.Moreover, there is a simplified method of identifying the critical force. The comparison of values with the testing findings demonstrates the efficiency of employment of the approximate method.
Приведены дифференциальные уравнения движения стержня, испытывающего действие внезапно приложенной возрастающей во времени силы. Численное решение этих уравнений позволяет отыскать значения краевых пластических деформаций, обращающих функционал потери устойчивости в ноль. Функционал выступает критерием исчерпания несущей способности стержнем, что позволяет определить величину критической силы.Показан упрощенный способ нахождения критической силы, не требующий решения сложных дифференциальных уравнений движения стержня при упруго-пластической работе его материала. Приведенное сравнение расчетных величин с экспериментальными данными показывает хорошие результаты для вычислений по приближенной методике.
ДИНАМИЧЕСКОЕ НАГРУЖЕНИЕ,DYNAMIC LOAD,ДИНАМИЧЕСКИЙ ПРЕДЕЛ ТЕКУЧЕСТИ,DYNAMIC YIELD STRESS,УСТОЙЧИВОСТЬ,STABILITY,КРИТИЧЕСКАЯ СИЛА,CRITICAL FORCE,КИНЕМАТИЧЕСКИЕ УРАВНЕНИЯ,KINEMATIC EQUATIONS,СЖАТЫЙ СТЕРЖЕНЬ,COMPRESSED ROD
ДИНАМИЧЕСКОЕ НАГРУЖЕНИЕ,DYNAMIC LOAD,ДИНАМИЧЕСКИЙ ПРЕДЕЛ ТЕКУЧЕСТИ,DYNAMIC YIELD STRESS,УСТОЙЧИВОСТЬ,STABILITY,КРИТИЧЕСКАЯ СИЛА,CRITICAL FORCE,КИНЕМАТИЧЕСКИЕ УРАВНЕНИЯ,KINEMATIC EQUATIONS,СЖАТЫЙ СТЕРЖЕНЬ,COMPRESSED ROD
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
