
Работа посвящена развитию методов распознавания личности на основе голосовых данных. Предложен новый подход к формированию векторов признаков при предварительной обработке голосовых образцов, основанный на построении гистограмм частотных распределений мел-частотных кепстраль-ных коэффициентов. Отличительной особенностью является независимость полученного вектора от длины исходного голосового образца, его относительно малый размер и учет в нем разброса индивидуальных характеристик голосового тракта идентифицируемого субъекта. Разработан программный модуль идентификации личности по голосу на основе предложенного подхода и метода опорных векторов. Программный модуль реализован на языке МайаЬ с использованием функций пакета ^нсеЬох. Проведено сравнение с традиционно используемыми при решении задачи идентификации дикторов векторами признаков. Тестовые испытания разработанного модуля показали, что предложенный подход к предварительной обработке голосовых данных позволяет достичь относительно низкого значения вероятностей ошибок первого и второго рода и может использоваться при построении эффективных систем речевой идентификации.
This paper is devoted to the development of feature extraction methods for speaker recognition. A new approach based on histograms of mel-frequency cepstral coefficient (MFCC) distributions to calculate feature vectors for voice samples is proposed. The resulting vectors appear to be independent of original voice sample length and have relatively small sizes. They incorporate the spread of unique vocal tract related characteristics which can be used as distinctive features for recognition. This approach of voice recognition is implemented in a software module developed for MATLAB environment. A support vector machine method and Voicebox speech processing toolbox for MATLAB are utilized. Results of the developed module test runs are obtained and reported. A comparison of test results with results of traditionally used feature vector based techniques of speaker recognition shows relatively low rates of false acceptance and false match for the proposed approach. Feature vectors based on MFCC distributions can be effectively used in real world voice recognition systems.
ГОЛОСОВАЯ ИДЕНТИФИКАЦИЯ ЛИЧНОСТИ, ВЕКТОР ПРИЗНАКОВ, МЕЛ-ЧАСТОТНЫЕ КЕПСТРАЛЬНЫЕ КОЭФФИЦИЕНТЫ, РАСПРЕДЕЛЕНИЕ ЧАСТОТ
ГОЛОСОВАЯ ИДЕНТИФИКАЦИЯ ЛИЧНОСТИ, ВЕКТОР ПРИЗНАКОВ, МЕЛ-ЧАСТОТНЫЕ КЕПСТРАЛЬНЫЕ КОЭФФИЦИЕНТЫ, РАСПРЕДЕЛЕНИЕ ЧАСТОТ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
