Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Компьютерная оптикаarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Обработка информации комплексом нейронных сетей в распределённых волоконно-оптических измерительных системах

Обработка информации комплексом нейронных сетей в распределённых волоконно-оптических измерительных системах

Abstract

The paper discusses tomography reconstruction of distributed physical fields by means of distributed fiber optical measuring systems (FOMN) for incomplete parallel schemes of measuring lines (ML) stacking. The approach is presented, consists in optimization of geometry of a measuring network for the purpose of the further application neural network methods of restoration of a full-image of investigated functions. Possibility of a choice and use of a suitable neural network from set of the several, in advance trained, neural networks of RBF-type is investigated.

В работе рассмотрена задача восстановления параметров физических полей с использованием распределённых волоконно-оптических измерительных систем для случаев неполных схем укладки измерительных линий. Представлен новый комбинированный алгоритм, который заключается в "оптимизации геометрии" измерительной сети с целью дальнейшего применения комплекса нейронных сетей. Исследована возможность выбора и использования подходящей нейронной сети из комплекса нескольких заранее обученных нейронных сетей радиально-базисного типа.

Keywords

РАСПРЕДЕЛЁННЫЕ ВОЛОКОННО-ОПТИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ, СХЕМЫ УКЛАДКИ ИЗМЕРИТЕЛЬНЫХ ЛИНИЙ, ПАРАЛЛЕЛЬНО-ЛУЧЕВАЯ ТОМОГРАФИЯ, НЕЙРОННЫЕ RBF-СЕТИ, RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold