Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вестник Башкирского ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Оценка вклада теплопроводности в изменение температуры фильтрующейся в пористой среде жидкости

Оценка вклада теплопроводности в изменение температуры фильтрующейся в пористой среде жидкости

Abstract

High concern over fluid temperature in porous media has been first brought by wellbore temperature logging. Small temperature perturbations of one or two decimals of degree Celsius caused by Joule-Thomson and adiabatic effects can be precisely measured by modern temperature sensors. It allows using temperature logging as an effective tool to assess well integrity and reservoir condition. One of the processes that affects fluid temperature during flow through porous media is conductive heat transfer. Some of the investigations that contribute to studying fluid flow through porous media neglected the thermal conductivity in case of convection. A few well-known mathematical models also did not take conductive heat transfer into account. Different authors developed studies to estimate contribution of conductive heat transfer to the total temperature change and came up with different criteria for Peclet number. It shows an importance of precise assessment of conductive heat transfer impact on fluid temperature with regard to quantitative analysis of temperature data. The study of how the conductive heat transfer contributes to temperature changes during liquid flow through porous media is described in the paper. The results of this study are based on numerical modelling of single-phase steady-state fluid flow. A finite-difference method of implicit mode was employed in the numerical model. A proportional grid and constant time step were also used. The convective heat transfer was approximated using upwind scheme while the conductive heat transfer was approximated using central difference scheme. The scheme convergence estimation has been performed by comparison of numerical results with well-known analytical models. This analysis also shows the preferable grid size and time step for precise fluid temperature calculation. The results show temperature deviations not exceeding 0.01 °C for a wide variation of the Peclet number. For Peclet number less than 10, the relative temperature difference exceeds 10%. For conventional sandstone formations having thermal conductivity at in case of specific rates more than 10 m 2/d, an impact of radial thermal conductivity on Joule-Thomson heating is less than 10% and less than 0.01 °C of total difference.

На основе численного моделирования неизотермической однофазной фильтрации в насыщенной пористой среде с учетом конвективного переноса тепла, теплопроводности и баротермического эффекта получена оценка вклада теплопроводности среды в величину изменения температуры флюида. Важность исследования этого вопроса, с одной стороны, связана с определением границ применимости упрощенных аналитических моделей неизотермической фильтрации без учета теплопроводности среды и, с другой стороны, связана с оценкой требований к размерам ячеек сетки и к порядку аппроксимации производных при численном моделировании для корректного учета кондуктивного теплопереноса. Полученные результаты представляют интерес для специалистов, занимающихся разработкой математических моделей термогидродинамических процессов в нефтегазовых пластах и симуляторов для расчета полей давления и температуры в скважинах и пластах.

Keywords

ФИЛЬТРАЦИЯ, БАРОТЕРМИЧЕСКИЙ ЭФФЕКТ, ДРОССЕЛИРОВАНИЕ, СКВАЖИННАЯ ТЕРМОМЕТРИЯ, КОНВЕКТИВНЫЙ ТЕПЛОПЕРЕНОС, КОНДУКТИВНЫЙ ТЕПЛОПЕРЕНОС, ЧИСЛЕННАЯ МОДЕЛЬ, ЧИСЛО ПЕКЛЕ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold