
Let ???? be ??-dimensional (?? ? 2) submanifold in (?? + ??)-dimensional Euclidean space ????+?? (?? ? 1). Let ?? be arbitrary point ????, ???????? be tangent space to ???? at the point ??. Let ????(??, ??) be a geodesic on ???? passing through the point ?? ? ???? in the direction ?? ? ????????. Denote by ????(??, ??) and {??(??, ??) curvature and torsion of geodesic ????(??, ??) ? ????+??, respectively, calculated for point ??. Torsion {??(??, ??) of geodesic ????(??, ??) is called geodesic torsion of submanifold ???? ? ????+?? at the point ?? in the direction ??. Let ????(??, ??) be a normal section of submanifold ???? ? ????+?? at the point ?? ? ???? in the direction ?? ? ????????. Denote by ????(??, ??) and {??(??, ??) curvature and torsion of normal section ????(??, ??) ? ????+??, respectively, calculated for point ??. Denote by ?? the second fundamental form of ????, by ? the connection of van der Waerden Bortolotti. The fundamental form ?? ?= 0 is called cyclic recurrent if on ???? there exists 1-form ?? such that ?????(??,??) = ??(??)??(??,??) + ??(?? )??(??,??) + ??(??)??(??, ?? ) for all vector fields ??, ??,?? tangent to ????. Submanifold ???? ? ????+?? with cyclic recurrent the second fundamental form ?? ?= 0 is called cyclic recurrent submanifold. The properties of normal sections ????(??, ??) and geodesics ????(??, ??) on cyclic recurrent submanifolds ???? ? ????+?? are studied in this article. The conditions for which cyclic recurrent submanifolds ???? ? ????+?? have zero geodesic torsion {??(??, ??) ? 0 at every point ?? ? ???? in every direction ?? ? ???????? are derived in this article. Denote by ?0 a set of submanifolds ???? ? ????+??, on which ????(??, ??) ?= 0, {??(??, ??) ? 0, ??? ? ????, ??? ? ????????. The following theorem is proved in this article. Let ???? be a cyclic recurrent submanifold in ????+?? with no asymptotic directions. Then ???? belongs to the set ?0 if and only if the following condition holds: ????(??, ??) = ??(??), ??? ? ????, ??? ? ????????.
В работе исследуются свойства нормальных сечений и геодезических на ??-мерных циклически рекуррентных подмногообразиях ???? в (?? + ??)-мерных евклидовых пространствах ????+??. Устанавливаются условия, при которых циклически рекуррентные подмногообразия ???? ? ????+?? имеют нулевое геодезическое кручение в каждой точке по любому направлению.
ВТОРАЯ ФУНДАМЕНТАЛЬНАЯ ФОРМА, ЦИКЛИЧЕСКИ РЕКУРРЕНТНОЕ ПОДМНОГООБРАЗИЕ, ГЕОДЕЗИЧЕСКОЕ КРУЧЕНИЕ, НОРМАЛЬНОЕ СЕЧЕНИЕ, НОРМАЛЬНАЯ КРИВИЗНА, НОРМАЛЬНОЕ КРУЧЕНИЕ, СВЯЗНОСТЬ ВАН ДЕР ВАРДЕНА БОРТОЛОТТИ
ВТОРАЯ ФУНДАМЕНТАЛЬНАЯ ФОРМА, ЦИКЛИЧЕСКИ РЕКУРРЕНТНОЕ ПОДМНОГООБРАЗИЕ, ГЕОДЕЗИЧЕСКОЕ КРУЧЕНИЕ, НОРМАЛЬНОЕ СЕЧЕНИЕ, НОРМАЛЬНАЯ КРИВИЗНА, НОРМАЛЬНОЕ КРУЧЕНИЕ, СВЯЗНОСТЬ ВАН ДЕР ВАРДЕНА БОРТОЛОТТИ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
