Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Задача Гольдштика о склейке вихревых течений идеальной жидкости в осесимметрическом случае

Задача Гольдштика о склейке вихревых течений идеальной жидкости в осесимметрическом случае

Abstract

Рассматривается осесимметрическая модель вихревых течений идеальной несжимаемой жидкости с разрывной нелинейной завихренностью. Предложенная модель является обобщением схемы Лаврентьева, описывающей плоские отрывные течения идеальной жидкости, на осесимметрический случай. В терминах функции тока решается краевая задача Дирихле для неоднородного эллиптического уравнения Эйлера-Пуассона-Дарбу с разрывной нелинейностью в правой части уравнения относительно решения. Рассматриваемая задача является обобщением известной задачи Гольдштика о склейке плоских вихревых и потенциальных течений идеальной жидкости на осесимметрический случай. Показывается существование так называемого тривиального решения, которое соответствует потенциальному течению во всей области. На модельном примере (течение в шаре) устанавливается существование двух отличных от тривиального решений. Для общего случая задачи доказано существование нетривиального решения, показывающего существование рассматриваемого класса вихревых осесимметрических течений идеальной жидкости. В рассматриваемой модели считается, что стационарное течение идеальной жидкости является предельным течением вязкой жидкости при вязкости, стремящейся к нулю.

We consider that axially symmetric model of vortical flows of an ideal incompressible liquid with discontinuous nonlinear vorticity. The proposed model is a generalization of the Lavrentev’s scheme planar separated flows of an ideal fluid for the axially symmetric case. In terms of the the flow function we solve the Dirichlet problem for the inhomogeneous elliptic Euler-Poisson-Darboux equation with discontinuous nonlinearity is relative to the decision in the right part of the equation. This problem is a generalization of the well-known problem of Goldshtik of pasting planar vortical and potential flows of an ideal liquid on the axially symmetric case. The existence of the so-called trivial solution, which corresponds to the potential flows in the whole domain is shown. On a model example (flow in the ball) we establish the existence of two non-trivial solutions. For the general case of the problem we prove the existence of a nontrivial solution, indicating the existence of this class of axially symmetric vortical flows of an ideal liquid. In the model it is assumed that the stationary flow of an ideal liquid is a limiting flow of a viscous with viscosity tends to zero.

Keywords

ВИХРЕВЫЕ И ПОТЕНЦИАЛЬНЫЕ ТЕЧЕНИЯ, ЗАВИХРЕННОСТЬ, ЗАДАЧА ГОЛЬДШТИКА, ТРИВИАЛЬНОЕ РЕШЕНИЕ, ФУНКЦИЯ ГРИНА, ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ, GOLDSHTIK'S PROBLEM, GREEN'S FUNCTION

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average