Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of Chelyabi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Введение в теорию инвариантов конечного типа узлов и трехмерных многообразий, определяемых как число конфигураций в графе

Введение в теорию инвариантов конечного типа узлов и трехмерных многообразий, определяемых как число конфигураций в графе

Abstract

Концепция инвариантов конечного типа для узлов была предложена в 90-х гг. в работах Васильева, Гусарова и Бар-Натана с целью классификации инвариантов узлов вскоре после появления многочисленных квантовых инвариантов узлов. Эта очень полезная концепция была расширена Отсуки до случая инвариантов трехмерных многообразий. В статье показывается, как определить инварианты конечного типа для узлов и трехмерных многообразий путем подсчета конфигураций графа в трехмерных многообразиях. Мы следуем идеям Виттена и Концевича. Число зацеплений является простейшим инвариантом конечного типа для двухкомпонентных зацеплений. Он определяется несколькими эквивалентными способами в первом разделе. В качестве важного примера приводится его определение как алгебраическое пересечение тора и 4-цепи, называемое пропагатором в конфигурационном пространстве. Во втором разделе мы вводим простейший инвариант конечного типа для трехмерных многообразий инвариант Кассона (или.-инвариант) целочисленных гомологических 3-сфер. Он определяется как алгебраическое пересечение трех пропагаторов в одном и том же двухточечном конфигурационном пространстве. В третьем разделе описано общее понятие инварианта конечного типа и введены соответствующие пространства диаграмм Фейнмана Якоби. В разделах 4 и 5 мы даем набросок оригинальной конструкции, основанной на интегралах конфигурационного пространства универсальных инвариантов конечного типа для зацеплений в рациональных гомологических сферах, а также формулируем несколько нерешенных проблем. Наша конструкция обобщает известные конструкции для зацеплений в 3 и для рациональных гомологических 3-сфер, что делает ее более гибкой. В разделе 6 детально описываны необходимые свойства параллелизаций трехмерных многообразий и соответствующих классов Понтрягина.

The finite type invariant concept for knots was introduced in the 90’s in order to classify knot invariants, with the work of Vassiliev, Goussarov and Bar-Natan, shortly after the birth of numerous quantum knot invariants. This very useful concept was extended to 3-manifold invariants by Ohtsuki. These introductory lectures show how to define finite type invariants of links and 3-manifolds by counting graph configurations in 3-manifolds, following ideas of Witten and Kontsevich. The linking number is the simplest finite type invariant for 2-component links. It is defined in many equivalent ways in the first section. As an important example, we present it as the algebraic intersection of a torus and a 4-chain called a propagator in a configuration space. In the second section, we introduce the simplest finite type 3-manifold invariant, which is the Casson invariant (or the.-invariant) of integer homology 3-spheres. It is defined as the algebraic intersection of three propagators in the same two-point configuration space. In the third section, we explain the general notion of finite type invariants and introduce relevant spaces of Feynman Jacobi diagrams. In Sections 4 and 5, we sketch an original construction based on configuration space integrals of universal finite type invariants for links in rational homology 3-spheres and we state open problems. Our construction generalizes the known constructions for links in 3 and for rational homology 3-spheres, and it makes them more flexible. In Section 6, we present the needed properties of parallelizations of 3-manifolds and associated Pontrjagin classes, in details.

Keywords

УЗЛЫ, ТРЕХМЕРНЫЕ МНОГООБРАЗИЯ, ИНВАРИАНТЫ КОНЕЧНЫХ ТИПА, ГОМОЛОГИЧЕСКИЕ 3-СФЕРЫ, ЧИСЛО ЗАЦЕПЛЕНИЙ, ТЕТА-ИНВАРИАНТ, ИНВАРИАНТ КАССОНА-УОЛКЕРА, ДИАГРАММЫ ФЕЙНМАНА-ЯКОБИ, РАСШИРЕНИЕ ТЕОРИИ ЧЕРНА-САЙМОНСА, ИНТЕГРАЛЫ КОНФИГУРАЦИОННОГО ПРОСТРАНСТВА, ПАРАЛЛЕЛИЗАЦИЯ ТРЕХМЕРНЫХ МНОГООБРАЗИЙ, ПЕРВЫЙ КЛАСС ПОНТРЯГИНА

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze