Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Econometricsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Автокорреляция в глобальном стохастическом тренде

Автокорреляция в глобальном стохастическом тренде

Abstract

В работе развивается модель Korhonen-Peresetsky, в которой доходность индекса финансового рынка была представлена в виде суммы двух независимых компонент: глобальной (которая зависит от новостей, имеющих влияние на глобальный финансовый рынок) и локальной (зависящей от новостей, значимых только для данного рынка). Модель учитывала несинхронность наблюдений однодневных доходностей финансовых рынков, находящихся в разных часовых поясах, и позволяла оценить этот (ненаблюдаемый) глобальный тренд. При этом предполагалось, что приращения глобального тренда между моментами закрытия бирж независимы. В данной статье предложена модель с автокорреляцией глобального стохастического тренда, которая предполагает возможность корреляции его приращений на соседних временных интервалах. Проведенные оценки показывают наличие значимо отличающейся от нуля автокорреляции. Это впрочем, не обязательно означает предсказуемость однодневных доходностей фондовых индексов, поскольку автокорреляция обнаружена в ненаблюдаемой глобальной составляющей.

Korhonen and Peresetsky (2013) suggested a new Kalman-filter type model of financial markets to extract a global stochastic trend from discrete non-synchronous data on daily stock market index returns from different markets. We extend this model to allow the correlation between increments of this global trend on neighbor intervals. Existence of that non-zero correlation is demonstrated. However it does not mean that it helps forecast daily returns of the stock indices itself, since the global stochastic trend is unobservable. Forecasting performance of the model with three stock markets is explored.

Keywords

ГЛОБАЛЬНЫЙ СТОХАСТИЧЕСКИЙ ТРЕНД, ФИЛЬТР КАЛМАНА, ФИНАНСОВЫЕ РЫНКИ, ГЛОБАЛИЗАЦИЯ, МОДЕЛЬ "СОСТОЯНИЕ-НАБЛЮДЕНИЕ", НЕСИНХРОННЫЕ НАБЛЮДЕНИЯ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze