
A method is proposed for estimation of dependence between primary measuring capacitor sensor output signal and density of grain flow based on neural network technologies. Description of the method and results of investigation are presented.
Рассматривается способ установления зависимости параметров выходного сигнала емкостного первичного измерительного преобразователя от плотности потока зерна с помощью нейросетевых технологий. Приведены методика и результаты экспериментов.
ИЗМЕРЕНИЕ РАСХОДА,FLOW MEASURING,ЗЕРНО,GRAIN,ПЕРВИЧНЫЙ ЕМКОСТНЫЙ ПРЕОБРАЗОВАТЕЛЬ,PRIMARY CAPACITOR SENSOR,НЕЙРОСЕТЕВЫЕ ТЕХНОЛОГИИ,NEURAL NETWORK TECHNOLOGIES
ИЗМЕРЕНИЕ РАСХОДА,FLOW MEASURING,ЗЕРНО,GRAIN,ПЕРВИЧНЫЙ ЕМКОСТНЫЙ ПРЕОБРАЗОВАТЕЛЬ,PRIMARY CAPACITOR SENSOR,НЕЙРОСЕТЕВЫЕ ТЕХНОЛОГИИ,NEURAL NETWORK TECHNOLOGIES
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
