Powered by OpenAIRE graph
Found an issue? Give us feedback

Применение нейросетевых технологий для определения величины расхода сыпучего вещества

Применение нейросетевых технологий для определения величины расхода сыпучего вещества

Abstract

A method is proposed for estimation of dependence between primary measuring capacitor sensor output signal and density of grain flow based on neural network technologies. Description of the method and results of investigation are presented.

Рассматривается способ установления зависимости параметров выходного сигнала емкостного первичного измерительного преобразователя от плотности потока зерна с помощью нейросетевых технологий. Приведены методика и результаты экспериментов.

Keywords

ИЗМЕРЕНИЕ РАСХОДА,FLOW MEASURING,ЗЕРНО,GRAIN,ПЕРВИЧНЫЙ ЕМКОСТНЫЙ ПРЕОБРАЗОВАТЕЛЬ,PRIMARY CAPACITOR SENSOR,НЕЙРОСЕТЕВЫЕ ТЕХНОЛОГИИ,NEURAL NETWORK TECHNOLOGIES

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze