Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вестник Донского гос...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Применение численных фундаментальных решений в методе точечных источников поля

Применение численных фундаментальных решений в методе точечных источников поля

Abstract

The work objective is to obtain an integral equation by which, using the known fundamental solution to the other equation, it is possible to find a fundamental solution to the linear elliptic equation. The concept of a numerical fundamental solution (NFS) is introduced. The so obtained numerical fundamental solutions (NFS) can be used for solving boundary value problems for N-dimensional elliptic equations by the field point source method (PSM). The research result is the development of the effective numerical method for solving boundary value problems using the NFS. This allows expanding the range of solvable problems using PSM, making PSM a universal numerical method for solving boundary value problems for linear elliptic equations. It admits solutions to various types of boundary value problems. Especially effective is the use of the proposed method for solving three-dimensional Dirichlet problems for equations with spherically symmetric fundamental solutions. The Schrödinger equation for a one-dimensional quantum oscillator is solved by the proposed method as a test problem. It is shown that it is possible to find the eigenvalues and eigenfunctions of the quantum oscillator using numerically obtained fundamental solutions to the Schrödinger equation. The oscillator eigenfunctions obtained by the proposed method are in good agreement with the known analytical solutions to quantum problems. Then, as another test example, a two-dimensional boundary value problem for the Helmholtz equation is solved. In this case, it is necessary to obtain a numerical fundamental solution to the Helmholtz equation first. Dependences of the numerical solution error on the nodes number in the problem solution domain are calculated. Upon the results obtained, the following conclusion is made. The results of solving test problems confirm the efficiency of the proposed numerical method.

Целью работы является получение интегрального уравнения, с помощью которого, используя известное фундаментальное решение другого уравнения, возможно численным методом найти фундаментальное решение линейного уравнения эллиптического типа. Вводится понятие численного фундаментального решения (ЧФР). Полученные таким образом численные фундаментальные решения (ЧФР) могут быть использованы при решении краевых задач для уравнений эллиптического типа различной размерности с помощью метода точечных источников поля (МТИ). Результатом работы является создание эффективного численного метода решения краевых задач с использованием ЧФР. Это позволяет расширить круг решаемых с помощью МТИ задач. Таким образом, МТИ выступает в качестве универсального численного метода при решении краевых задач для линейных уравнений эллиптического типа. Особенно эффективно применение предложенного способа при решении трехмерных задач Дирихле для уравнений со сферически симметричными фундаментальными решениями. В качестве тестовой задачи предложенным способом решено уравнение Шредингера для одномерного квантового осциллятора. Показано, что, используя фундаментальные решения уравнения Шредингера, полученные численно, удается найти собственные значения и собственные функции квантового осциллятора. Найденные собственные функции осциллятора соответствуют известным аналитическим решениям квантовой задачи. В качестве другого тестового примера решается двумерная краевая задача для уравнения Гельмгольца. В этом случае предварительно находится численное фундаментальное решение для уравнения Гельмгольца. Вычислены зависимости погрешности численного решения от числа узлов в области решения задачи. На основании полученных результатов делается вывод о перспективности предложенного численного метода.

Keywords

ФУНДАМЕНТАЛЬНОЕ РЕШЕНИЕ,МЕТОД ФУНДАМЕНТАЛЬНЫХ РЕШЕНИЙ,МЕТОД ТОЧЕЧНЫХ ИСТОЧНИКОВ,МЕТОД ИНТЕГРИРОВАННЫХ ИСТОЧНИКОВ,ДИСКРЕТНЫЕ ИСТОЧНИКИ,FUNDAMENTAL SOLUTION,METHOD OF FUNDAMENTAL SOLUTIONS,POINT SOURCE METHOD,INTEGRATED SOURCES METHOD,DISCRETE SOURCES

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold