Powered by OpenAIRE graph
Found an issue? Give us feedback

Повышение надежности объектов газотранспортных систем с использованием логико-вероятностного метода

Повышение надежности объектов газотранспортных систем с использованием логико-вероятностного метода

Abstract

В статье рассматривается возможность применения логико-вероятностных методов моделирования для оценки надежности сложных систем электроснабжения. Описан алгоритм реализации логико-вероятностного моделирования. Показан пример расчета надежности сложной системы электроснабжения на примере газокомпрессорной станции «Торжокская» ОАО «Газпром». Произведена оценка влияния надежности отдельных элементов на надежность системы в целом.

Keywords

НАДЕЖНОСТЬ,СИСТЕМА ЭЛЕКТРОСНАБЖЕНИЯ,ЛОГИКО-ВЕРОЯТНОСТНЫЙ МЕТОД,ГАЗОКОМПРЕССОРНАЯ СТАНЦИЯ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average