Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radio Electronics, C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

СТРУКТУРНОЕ РАСПОЗНАВАНИЕ ИЗОБРАЖЕНИЙ С ПРИМЕНЕНИЕМ МОДЕЛЕЙ ИНТЕЛЛЕКТУАЛЬНОЙ ОБРАБОТКИ И САМООРГАНИЗАЦИИ ПРИЗНАКОВ

СТРУКТУРНОЕ РАСПОЗНАВАНИЕ ИЗОБРАЖЕНИЙ С ПРИМЕНЕНИЕМ МОДЕЛЕЙ ИНТЕЛЛЕКТУАЛЬНОЙ ОБРАБОТКИ И САМООРГАНИЗАЦИИ ПРИЗНАКОВ

Abstract

Paper describes an investigation about the problem of image recognition in computer vision based on a set of structural SURF-features. Self-organization process is proposed to be performed in space of structural features with a goal to increase recognition process performance. Kohonen neural network is used as self-organization method. The object of research is the method of similarity calculations and models of intelligent data processing in the new feature space. The subject of research is the systematization and grouping of sets of structural features of visual objects. Goal of a paper is to construct structural recognition method based on input data as a set of cluster structural features obtained as a result of self-organization. The objectives of the research are the investigation of the features and analysis of models to calculate clusters of features, the construction of the modified measures of structural similarity, the experimental evaluation of the recognition quality for different ways of descriptions comparison in the application-based visual image database. Construction of an image recognition method based on etalon descriptions as a cluster was proposed, recognition is based on the classification of the structural features of an object in cluster space with further calculation and optimization of the similarity vector descriptions. Experimental investigations and simulations of the proposed recognition method on the test image set with the use of SURF characteristic features were performed. Performance boost and efficiency of the method were confirmed, estimation of recognition quality for different processing options was performed.

Статья посвящена исследованию проблемы распознавания изображений в компьютерном зрении на основе множества структурных SURF-признаков. В пространстве структурных признаков выполнена самоорганизация с целью увеличения быстродействия процесса распознавания. В качестве аппарата самоорганизации использована нейронная сеть Кохонена. Объектом исследования есть метод вычисления подобия описаний и модели интеллектуальной обработки в новом пространстве признаков. Предметом исследования является систематизация и группирование множеств структурных признаков визуальных объектов. Цель работы – построение метода структурного распознавания с применением входных данных в виде множества кластеров структурных признаков, полученных в результате самоорганизации. Задачами исследования есть изучение особенностей и анализ моделей для вычисления характеристик кластеров, построение модифицированных мер структурного подобия, экспериментальное оценивание качества распознавания для разных способов сопоставления описаний в прикладной базе визуальных образцов. Предложено построение метода распознавания изображений на основе эталонных описаний в кластерном виде, а распознавание базируется на классификации структурных признаков объекта в пространстве кластеров с дальнейшим вычислением и оптимизацией подобия векторных описаний. Проведено моделирование и экспериментальные исследования предложенного метода распознавания на тестовом множестве изображений с применением признаков SURF. Подтверждена работоспособность и эффективность метода в плане быстродействия, получены оценки качества распознавания для разнообразия вариантов обработки.

Keywords

компьютерное зрение, структурное распознавание изображений, характерные признаки, дескрипторы, структурное описание, метод SURF, самоорганизация, кластеризация, сеть Кохонена, подобие векторных описаний, матрица характеристик кластеров

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold