Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия Иркутского ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

О РЕШЕНИИ ЗАДАЧИ ДИРИХЛЕ - КОШИ ДЛЯ УРАВНЕНИЯ БАРЕНБЛАТТА - ГИЛЬМАНА

О РЕШЕНИИ ЗАДАЧИ ДИРИХЛЕ - КОШИ ДЛЯ УРАВНЕНИЯ БАРЕНБЛАТТА - ГИЛЬМАНА

Abstract

В работе исследуется разрешимость задачи Дирихле Коши для уравнения Баренблатта Гильмана, моделирующего неравновесную противоточную капиллярную пропитку. Особенностью рассматриваемой модели является учет эффекта неравновесности это становится особенно важно, когда процесс пропитки занимает продолжительное время. Нерегулярный и сложный характер структуры порового пространства не позволяет изучать движение жидкостей и газов в нем обычными методами гидродинамики. Поэтому возникает необходимость в создании и исследовании специальных моделей, описывающих эти процессы. Основное уравнение модели является нелинейным и не разрешимо относительно производной по времени. Это создает значительные трудности при его рассмотрении. Авторы относят уравнение Баренблатта Гильмана к широкому классу уравнений соболевского типа. Уравнения соболевского типа составляют обширную область неклассических уравнений математической физики. Методы исследования, которые используются в работе, первоначально возникли в теории полулинейных уравнений соболевского типа. В таком контексте уравнение рассматривается впервые. Исходная задача решается путем редукции в подходящих функциональных пространствах к задаче Коши для абстрактного квазилинейного уравнения соболевского типа с s-монотонным и p-коэрцитивным оператором. Для абстрактной и исходной задачи доказаны теоремы существования обобщенных решений.

We investigate the solvability of the Dirichlet Cauchy problem for the Barenblatt Gilman equation modeling the nonequilibrium countercurrent capillary impregnation. The feature of this model is the consideration of non-equilibrium effect this becomes especially important when the process of impregnation takes a long time. Irregular and complex structure of the pore space does not allow to study the movement of liquids and gases therein by conventional methods of hydrodynamics. Hence the design and analysis of specific models describing these processes are required. The main equation of the model is nonlinear and not solvable for the derivative. This creates a significant difficulty in its consideration. The authors attribute the Barenblatt Gilman equation to the wide class of Sobolev type equations. Sobolev type equations constitute an extensive area of nonclassical equations of mathematical physics. Research methods that are used in the work are initially emerged in the theory of semilinear Sobolev type equations. The equation is first considered in this context. The original problem is solved by the reduction in suitable functional spaces to the Cauchy problem for an abstract quasilinear Sobolev type equation with s-monotone and p-coercive operator. Existence theorems have been proven for generalized solutions of the abstract and the original problem.

Keywords

УРАВНЕНИЕ БАРЕНБЛАТТА ГИЛЬМАНА,НЕРАВНОВЕСНАЯ ПРОТИВОТОЧНАЯ КАПИЛЛЯРНАЯ ПРОПИТКА,КВАЗИЛИНЕЙНОЕ УРАВНЕНИЕ СОБОЛЕВСКОГО ТИПА,BARENBLATT GILMAN EQUATION,COUNTERCURRENT CAPILLARY IMPREGNATION,QUASILINEAR SOBOLEV TYPE EQUATION

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold