
В работе исследуется разрешимость задачи Дирихле Коши для уравнения Баренблатта Гильмана, моделирующего неравновесную противоточную капиллярную пропитку. Особенностью рассматриваемой модели является учет эффекта неравновесности это становится особенно важно, когда процесс пропитки занимает продолжительное время. Нерегулярный и сложный характер структуры порового пространства не позволяет изучать движение жидкостей и газов в нем обычными методами гидродинамики. Поэтому возникает необходимость в создании и исследовании специальных моделей, описывающих эти процессы. Основное уравнение модели является нелинейным и не разрешимо относительно производной по времени. Это создает значительные трудности при его рассмотрении. Авторы относят уравнение Баренблатта Гильмана к широкому классу уравнений соболевского типа. Уравнения соболевского типа составляют обширную область неклассических уравнений математической физики. Методы исследования, которые используются в работе, первоначально возникли в теории полулинейных уравнений соболевского типа. В таком контексте уравнение рассматривается впервые. Исходная задача решается путем редукции в подходящих функциональных пространствах к задаче Коши для абстрактного квазилинейного уравнения соболевского типа с s-монотонным и p-коэрцитивным оператором. Для абстрактной и исходной задачи доказаны теоремы существования обобщенных решений.
We investigate the solvability of the Dirichlet Cauchy problem for the Barenblatt Gilman equation modeling the nonequilibrium countercurrent capillary impregnation. The feature of this model is the consideration of non-equilibrium effect this becomes especially important when the process of impregnation takes a long time. Irregular and complex structure of the pore space does not allow to study the movement of liquids and gases therein by conventional methods of hydrodynamics. Hence the design and analysis of specific models describing these processes are required. The main equation of the model is nonlinear and not solvable for the derivative. This creates a significant difficulty in its consideration. The authors attribute the Barenblatt Gilman equation to the wide class of Sobolev type equations. Sobolev type equations constitute an extensive area of nonclassical equations of mathematical physics. Research methods that are used in the work are initially emerged in the theory of semilinear Sobolev type equations. The equation is first considered in this context. The original problem is solved by the reduction in suitable functional spaces to the Cauchy problem for an abstract quasilinear Sobolev type equation with s-monotone and p-coercive operator. Existence theorems have been proven for generalized solutions of the abstract and the original problem.
УРАВНЕНИЕ БАРЕНБЛАТТА ГИЛЬМАНА,НЕРАВНОВЕСНАЯ ПРОТИВОТОЧНАЯ КАПИЛЛЯРНАЯ ПРОПИТКА,КВАЗИЛИНЕЙНОЕ УРАВНЕНИЕ СОБОЛЕВСКОГО ТИПА,BARENBLATT GILMAN EQUATION,COUNTERCURRENT CAPILLARY IMPREGNATION,QUASILINEAR SOBOLEV TYPE EQUATION
УРАВНЕНИЕ БАРЕНБЛАТТА ГИЛЬМАНА,НЕРАВНОВЕСНАЯ ПРОТИВОТОЧНАЯ КАПИЛЛЯРНАЯ ПРОПИТКА,КВАЗИЛИНЕЙНОЕ УРАВНЕНИЕ СОБОЛЕВСКОГО ТИПА,BARENBLATT GILMAN EQUATION,COUNTERCURRENT CAPILLARY IMPREGNATION,QUASILINEAR SOBOLEV TYPE EQUATION
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
