Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University proceedin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Динамическая устойчивость упругого элемента проточного канала

Динамическая устойчивость упругого элемента проточного канала

Abstract

Background. The purpose of this work is to research the dynamic stability of an elastic element of a wall of a flow channel with a subsonic stream of gas or liquid in it. Materials and methods. Gas or liquid influence (in the model of ideal compressed environment) on the constructions is defined from the asymptotic linear equations of aerohydromechanics. For the description of dynamics of the elastic element representing an elastic plate, the linear theory of a solid deformable body was used. According to the specified assumptions the mathematical model of a channel containing an elastic element on one of walls, with a subsonic stream of gas or liquid, was constructed. The model was described by the related system of differential equations with partial derivatives, containing both the equation of movement of the gas-liquid environment and the equation of dynamics of a deformable element, for two unknown functions the potential of gas velocity and deformations of an elastic element. Determination of stability of an elastic body corresponds to the concept of stability of dynamic systems across Lyapunov. Research of stability was conducted on the basis of creation of the "mixed" functionals of Lyapunov type for the received related system of equations. Results. The mathematical model of a channel containing an elastic element on one of walls, with a flow of a subsonic stream of gas or liquid, was constructed. On the basis of the constructed functionals the dynamic stability of an elastic element was investigated. The sufficient stability conditions were received. The conditions impose restrictions on velocity of a uniform stream of gas, squeezing (stretching) effort of an element, flexural rigidity of an element and other parameters of the mechanical system. For the concrete example of mechanical systems the stability area on the plane of two parameters "squeezing effort-stream velocity" was constructed. Conclusions. The received sufficient stability conditions, imposing restrictions on parameters of the mechanical system, provide stability of fluctuations of an elastic element, namely: small deformations of an elastic element in the initial timepoint (i.e. small initial deviations from the position of balance) correspond to small deformations at any timepoint. For the parameters which aren't meeting these conditions, it is impossible to make certain conclusions about stability of fluctuations of an elastic element.

Актуальность и цели. Целью данной работы является исследование динамической устойчивости упругого элемента стенки канала при протекании в нем дозвукового потока газа или жидкости. Материалы и методы. Воздействие газа или жидкости (в модели идеальной сжимаемой среды) на конструкции определяется из асимптотических линейных уравнений аэрогидромеханики. Для описания динамики упругого элемента, представляющего собой упругую пластину, используется линейная теория твердого деформируемого тела. При указанных предположениях построена математическая модель канала, содержащего на одной из стенок упругий элемент, при протекании в канале дозвукового потока газа или жидкости. Модель описывается связанной системой дифференциальных уравнений в частных производных, содержащей как уравнение движения газожидкостной среды, так и уравнение динамики деформируемого элемента, для двух неизвестных функций потенциала скорости газа и деформаций упругого элемента. Определение устойчивости упругого тела соответствует концепции устойчивости динамических систем по Ляпунову. Исследование устойчивости проведено на основе построения «смешанных» функционалов типа Ляпунова для полученной связанной системы уравнений. Результаты. Построена математическая модель канала, содержащего на одной из стенок упругий элемент, при протекании в канале дозвукового потока газа или жидкости. На основе построенного функционала исследована динамическая устойчивость упругого элемента. Получены достаточные условия устойчивости, налагающие ограничения на скорость однородного потока газа, сжимающего (растягивающего) элемент усилия, изгибную жесткость элемента и другие параметры механической системы. Для конкретного примера механической системы построена область устойчивости на плоскости двух параметров «сжимающее усилие скорость потока». Выводы. Полученные достаточные условия устойчивости, налагающие ограничения на параметры механической системы, обеспечивают устойчивость колебаний упругого элемента. Для параметров, не удовлетворяющих этим условиям, нельзя сделать определенных выводов об устойчивости колебаний упругого элемента.

Keywords

АЭРОГИДРОУПРУГОСТЬ, УСТОЙЧИВОСТЬ, УПРУГАЯ ПЛАСТИНА, ДЕФОРМАЦИЯ, ДОЗВУКОВОЙ ПОТОК

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold