
Omega\subset \mathbb{R}_n, \; n\geq 2,$ рассматривается задача Дирихле. Установлены оценки сверху, характеризующие зависимость скорости убывания решений на бесконечности от геометрии области $\Omega$. \medskipThe Dirihlet problem for quasilinear second order elliptic equations is considered in unbounded domains $\Omega\subset\mathbb{R}_n,\;n\geq 2$. The upper estimates, characterizing the dependence of behavior solutions on geometry domain $\Omega$ are established.
Для квазилинейных эллиптических уравнений второго порядка в неограниченных областях $\
убывание, квазилинейное эллиптическое уравнение, задача дирихле, неограниченная область
убывание, квазилинейное эллиптическое уравнение, задача дирихле, неограниченная область
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
