
In this paper, mathematical simulation of the motion of helium, methane, oxygen, and nitrogen molecules through an ultra-thin layer of a porous material composed by spherical nanoparti-cles of a similar size. The potential of the nanoparticle molecule interaction is taken in the form proposed by V.Y. Rudyak and S.L. Krasnolutsky. The permeability layer with a size of about 10 -7 m was studied by the method of classical molecular dynamics.
Выполнено математическое моделирование движения молекул гелия, метана, кислорода и азота через ультратонкий слой пористого материала, составленного сферическими наночастицами одинакового размера. Потенциал взаимодействия наночастица молекула взят в форме, предложенной В.Я. Рудяком, С.Л. Краснолуцким. Методом классической молекулярной динамики изучена проницаемость слоя, имеющего размер порядка 10 -7 м.
ПОЛЕ ПОТЕНЦИАЛЬНЫХ СИЛ, НАНОЧАСТИЦЫ, ДВИЖЕНИЕ МОЛЕКУЛ, ЧИСЛЕННЫЕ МЕТОДЫ, ПРОНИЦАЕМОСТЬ СЛОЯ
ПОЛЕ ПОТЕНЦИАЛЬНЫХ СИЛ, НАНОЧАСТИЦЫ, ДВИЖЕНИЕ МОЛЕКУЛ, ЧИСЛЕННЫЕ МЕТОДЫ, ПРОНИЦАЕМОСТЬ СЛОЯ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
