
С использованием дополнительных граничных условий в интегральном методе теплового баланса получено высокой точности приближенное аналитическое решение задачи теплообмена для жидкости, движущейся в плоскопараллельном канале при симметричных граничных условиях первого рода. Ввиду бесконечной скорости распространения теплоты, описываемой параболическим уравнением теплообмена, температура в центре канала изменяется тотчас же после приложения граничного условия первого рода. Путём представления этой температуры в виде дополнительной искомой функции, а также использования дополнительных граничных условий, определяемых так, чтобы искомое решение удовлетворяло исходному дифференциальному уравнению в граничных точках, находится приближенное аналитическое решение краевой задачи. Использование интеграла теплового баланса позволяет свести решение дифференциального уравнения в частных производных к интегрированию обыкновенного дифференциального уравнения относительно дополнительной искомой функции, изменяющейся лишь по продольной переменной. Показано, что выполнение исходного уравнения лишь на границах области с увеличением числа приближений приводит к его выполнению и внутри области. Отсутствие необходимости интегрирования дифференциального уравнения по поперечной пространственной переменной, ограничиваясь лишь выполнением интеграла теплового баланса (осредненного исходного дифференциального уравнения), позволяет применять данный метод к краевым задачам, решения которых не могут быть получены с помощью классических аналитических методов.
Using the integral method of heat-transfer with the additional boundary conditions we obtain the high precision approximate analytical solution of heat-transfer for a fluid, moving in plate-parallel channel with symmetric boundary conditions of the first kind. Because of the infinite speed of heat propagation described by a parabolic equation of heat-conduction, the temperature in the centre of channel would change immediately after the boundary conditions (of the first kind) application. We receive the approximate analytical solution of boundary value problem using the representation of this temperature in the form of additional required function and introducing the additional boundary conditions to satisfy the original differential equation in boundary points by the desired function. Using of the integral of heat balance we reduce the solving of differential equation in partial derivatives to integration of ordinary differential equation with respect to additional required function, that changes depending on longitudinal variable. We note that fulfillment of the original equation at the boundaries of the area with increasing number of approximations leads to the fulfillment of that equation inside the area. No need to integrate the differential equation on the transverse spatial variable, so we are limited only by the implementation of the integral of heat-transfer (averaged original differential equation), that allows to apply this method to boundary value problems, unsolvable using classic analytical methods.
ТЕПЛООБМЕН В ЖИДКОСТИ,БЕСКОНЕЧНАЯ СКОРОСТЬ РАСПРОСТРАНЕНИЯ ТЕПЛОТЫ,ИНТЕГРАЛЬНЫЙ МЕТОД ТЕПЛОВОГО БАЛАНСА,ПРИБЛИЖЕННОЕ АНАЛИТИЧЕСКОЕ РЕШЕНИЕ,ДОПОЛНИТЕЛЬНАЯ ИСКОМАЯ ФУНКЦИЯ,ДОПОЛНИТЕЛЬНЫЕ ГРАНИЧНЫЕ УСЛОВИЯ,ТРИГОНОМЕТРИЧЕСКИЕ КООРДИНАТНЫЕ ФУНКЦИИ,HEAT CONDUCTION IN FLUID,INFINITE SPEED OF HEAT PROPAGATION,INTEGRAL METHOD OF THERMAL BALANCE,APPROXIMATE ANALYTICAL SOLUTION,ADDITIONAL REQUIRED FUNCTION,ADDITIONAL BOUNDARY CONDITIONS,TRIGONOMETRIC COORDINATE FUNCTIONS
ТЕПЛООБМЕН В ЖИДКОСТИ,БЕСКОНЕЧНАЯ СКОРОСТЬ РАСПРОСТРАНЕНИЯ ТЕПЛОТЫ,ИНТЕГРАЛЬНЫЙ МЕТОД ТЕПЛОВОГО БАЛАНСА,ПРИБЛИЖЕННОЕ АНАЛИТИЧЕСКОЕ РЕШЕНИЕ,ДОПОЛНИТЕЛЬНАЯ ИСКОМАЯ ФУНКЦИЯ,ДОПОЛНИТЕЛЬНЫЕ ГРАНИЧНЫЕ УСЛОВИЯ,ТРИГОНОМЕТРИЧЕСКИЕ КООРДИНАТНЫЕ ФУНКЦИИ,HEAT CONDUCTION IN FLUID,INFINITE SPEED OF HEAT PROPAGATION,INTEGRAL METHOD OF THERMAL BALANCE,APPROXIMATE ANALYTICAL SOLUTION,ADDITIONAL REQUIRED FUNCTION,ADDITIONAL BOUNDARY CONDITIONS,TRIGONOMETRIC COORDINATE FUNCTIONS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
