Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vestnik of Saint Pet...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Прогнозирование уровня манипулирования прибылью компании

Прогнозирование уровня манипулирования прибылью компании

Abstract

The purpose of the current paper is to develop a model for forecasting the level of earnings manipulation of Russian companies on the basis of indicators that measure their financial position and financial performance. The sample analyzed in the current paper comprises 620 public companies listed on the Moscow stock exchange in 2009–2014. Regression analysis as well as decision tree methods are used. The paper outlines the main conditions under which a particular type of earnings manipulation is performed by companies in the accounting period next to the current one. It is shown that the main factors influencing the company’s level of earnings manipulation of the next accounting period are: company’s debt ratio, size, return on equity, earnings persistence, financial activities and the level of earnings manipulation of the current period. In the current research only accounting-based methods of earnings manipulation were considered, therefore further research can focus more on the second group of methods, i.e. real earnings manipulation. The results of current research can be used in order to forecast the level of earnings manipulation of Russian companies. These findings can be important to numerous external users of companies’ accounting information (for example, banks, potential investors, state authorities etc.). The current paper contributes to the existing research on earnings manipulation in the following way. Firstly, the existing research papers analyzed in the first place the cases of upward earnings manipulation, while the results of our research can be used in order to predict the whole set of earnings manipulation cases, i.e. upward manipulation, downward manipulation and insignificant manipulation. Furthermore, the current research is one of the first studies of forecasting the level of earnings manipulation of Russian companies.

В статье представлены результаты исследования, связанного с прогнозированием уровня манипулирования прибылью российских компаний на основе ряда показателей, характеризующих их финансовое состояние и финансовый результат. Эмпирическая часть работы выполнена на данных 620 российских открытых акционерных обществ за период с 2009 по 2014 г. С помощью методов регрессионного анализа и классификационного дерева решений определены основные условия осуществления компанией определенного вида манипулирования прибылью в следующем за текущим отчетном периоде. Установлено, что наиболее важными факторами манипулирования прибылью компании в будущем являются: уровень долга и размер компании, рентабельность собственного капитала, устойчивость прибыли, финансовая деятельность, а также уровень манипулирования прибылью текущего отчетного периода.

Keywords

пользователи учетной информации, манипулирование прибылью, прогнозирование

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities