
Строятся малые решения x(t) ^ 0 при t ^ 0 уравнений с функциональными возмущениями аргумента. Методом диаграмм Ньютона нелинейное уравнение с ФВА сводится к нескольким квазилинейным уравнениям с ФВА. Решение строится в классе непрерывных функций, обладающих логарифмо-степенной асимптотикой.
Local solution of equation with functionaly modified argument is found. Method of Neuton"s diagramm is used to consider the nonlinear operator equation with functionaly modified argument. The local solution is built in a class of continious function with logariphmic asymptoty.
ФУНКЦИОНАЛЬНОЕ ВОЗМУЩЕНИЕ АРГУМЕНТА, НЕЛИНЕЙНЫЕ ОПЕРАТОРНЫЕ УРАВНЕНИЯ
ФУНКЦИОНАЛЬНОЕ ВОЗМУЩЕНИЕ АРГУМЕНТА, НЕЛИНЕЙНЫЕ ОПЕРАТОРНЫЕ УРАВНЕНИЯ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
