Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Компьютерная оптикаarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Согласованные полиномиальные признаки для анализа полутоновых биомедицинских изображений

Согласованные полиномиальные признаки для анализа полутоновых биомедицинских изображений

Abstract

В работе в общем виде вводятся полиномиальные признаки, представляющие собой многочлены на множестве отсчётов изображения. Показывается, что при наложении естественных ограничений предложенные полиномиальные признаки обращаются в линейные комбинации отсчётов автокорреляционной функции изображения. Предлагается ряд подходов к согласованию этих признаков с текстурными свойствами изображений из обучающей выборки. С помощью вычислительных экспериментов на трёх наборах реальных диагностических изображений демонстрируется эффективность рассмотренных признаков, выражающаяся в снижении вероятности ошибочного распознавания рентгеновских изображений костной ткани с 0,10 до 0,06 по сравнению с ранее изученными методами.

We considered the general form of polynomial features represented as polynomials in the image pixels domain. We showed that under natural constraints these polynomial features turned to linear combinations of the image autocovariance function readings. We proposed a number of approaches for matching the features under study with texture properties of images from a training sample. During computational experiments on three sets of real diagnostic images we demonstrated the efficiency of the proposed features, which involved the decrease of the recognition error probability of X-ray bone tissue images from 0.10 down to 0.06 in comparison with the previously studied methods.

Keywords

текстурный анализ, дискриминантный анализ, построение признаков, отбор признаков, компьютерная диагностика, полиномиальные признаки

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold