
This work offers a three-dimensional model of erythrocyte motion in the capillary with an account for erythrocyte rolling, volume and e surface area. This model was used to study the motion of red blood cells in the capillary, considering membrane mobility, erythrocyte’s shape and position in the capillary, as well as stability of the cell’s volume and surface area. The study became a basis for numerical estimates and approximation formulas of the resistance exerted by erythrocytes while moving along the vessel, depending on microhemodynamical parameters (blood vessel diameter, plasma viscosity and erythrocyte content, Young’s modulus, speed, cell’s volume and surface area). We have developed a model of a red blood cell aggregation moving through capillary fragments, obtained numerical estimates of the blood flow and vascular resistance of the capillary network, estimated the approximation expression of pressure difference allowing for the blood flow and depending on the hematocrit, plasma viscosity, vessel diameter and length, intervals between red cells arriving in the capillary network, erythrocyte speed, volume, surface area and elastic characteristics. Another model that we have offered is the model for regulating the blood flow and transporting oxygen by vasoactive metabolic products. In this model, we made allowances for the rate of metabolic products produced in body tissues and their physical and chemical properties (such as diffusion coefficients, solubility and permeability); as oxygen transport (metabolic products) between a tissue and red blood cells (capillaries); red blood cells’ motion along the capillaries; blood vessel diameter and length (arteries, arterioles, capillaries, venules, veins); architecture of the vascular net; hematocrit; transport of metabolic products between post-capillary venules and precapillary arterioles; changes in arteriolar diameter when smooth arteriole muscles are affected by vasoactive metabolic products; veno-arterial difference at the ends of the vascular net; hemodynamics in the blood flow. This model allowed us to study the regulation of blood flow and oxygen transport in the tissues, and to consider, along with the oxygen released by red blood cells and absorbed by body tissues, such parameters as vasoactive metabolic products released by body tissues, transport of such metabolic products to the venous net and further on to precapillary arterioles, where they affect arteriolar muscles and lead to changes in the cross-sectional area of arterioles, which, in its turn, affects hemodynamics in the blood flow, and hence the oxygen transport in the body tissues. Based on these studies, we have obtained numerical estimates and approximation formulas of the time required by the oxygen transport system (OTS) to go from one steady state to another, as well as estimated for blood flow velocity depending on the veno-arterial pressure difference at the ends of the vascular net and the rate of oxygen consumption. This paper also decribes an algorithm for assessing the state of the OTS in the human body judging from the heart rhythm. We have obtained numerical evaluation for the state of OTS of healthy volunteers and introduced an index of OTS state, which can be used to assess general physical working capacity (with an average load) for industrial and other employees. The paper offeres an algorithm for assessing OTS in the body allowing us to evaluate OTS in the case we lack certain data, which is particularly important in the case when we deal with patients rather than with healthy volunteers. In addition, this approach allows us to identify the ways to correct OTS considering the resources available.
Предложена трехмерная модель движения эритроцита по капилляру, учитывающая перекатывание, объем и площадь его поверхности. На основе этой модели исследовано движение эритроцита в капилляре, причем, наряду с подвижностью мембраны, формой и положением его в капилляре, учитывается постоянство объема и площади поверхности клетки. На основе проведенного исследования получены численные оценки и аппроксимационные формулы сопротивления, оказываемого эритроцитом при перемещении по сосуду, в зависимости от микрогемодинамических параметров (диаметр сосуда, вязкость плазмы и содержимого эритроцита, модуль Юнга, скорость, объем и площадь поверхности клетки). Предложена модель перемещения совокупности эритроцитов по фрагментам капиллярных сетей. Получены численные оценки кровотока и сопротивления сосудистого русла капиллярной сети. Найдены аппроксимационные выражения разности давлений, за счет которой осуществляется кровоток, от гематокрита, вязкости плазмы, диаметров и длин сосудов, интервалов между поступлениями клеток в капиллярную сеть, скорости, объема, площади поверхности и упругих характеристик эритроцита. Предложена модель регуляции кровотока и транспорта кислорода вазоактивными продуктами метаболизма, учитывающая, в частности, скорость производства продуктов метаболизма в ткани и их физико-химические свойства (коэффициенты диффузии, растворимости и проницаемости), транспорт кислорода (продуктов метаболизма) между тканью и эритроцитами (капиллярами), перемещение эритроцитов по капиллярам, диаметры и длины сосудов (артерий, артериол, капилляров, венул, вен), архитектонику сосудистого русла, гематокрит, транспорт продуктов метаболизма между посткапиллярными венулами и прекапиллярными артериолами, изменение диаметра артериол под воздействием вазоактивных продуктов метаболизма на гладкие мышцы артериол, артерио-венозную разность на концах сосудистого русла и гемодинамику в сосудистом русле. На основе этой модели исследована регуляция кровотока и транспорта кислорода в тканях, причем, наряду с выделением кислорода эритроцитами и поглощением его тканями, учитывается выделение тканями вазоактивных продуктов метаболизма, их транспорт в венозное русло, и далее в прекапиллярные артериолы, где, путем воздействия на мышцы артериол, происходит изменение площади поперечного сечения артериол, что влияет на гемодинамику в сосудистом русле и, следовательно, на транспорт кислорода в тканях. На основе проведенного исследования получены, в частности, численные оценки и аппроксимационные формулы времени перехода системы транспорта кислорода из одного стационарного состояния в другое и скорости кровотока в зависимости от артерио-венозной разности давлений на концах сосудистого ложа и скорости потребления кислорода тканями. Построен алгоритм оценки состояния системы транспорта кислорода (СТК) в организме по сердечному ритму. Получены численные оценки СТК для практически здоровых добровольцев. Введенный индекс состояния СТК может использоваться для оценки общей физической работоспособности (при средних нагрузках) для работников промышленных предприятий и других организаций. Предложен алгоритм экспертной оценки состояния системы транспорта кислорода (СТК) в организме. Этот алгоритм позволяет, в первом приближении, дать экспертную оценку состояния СТК при недостатке информации, что важно, в частности, в том случае, когда имеем дело не со здоровыми добровольцами, а с больными пациентами. Кроме того, этот подход позволяет определить пути коррекции СТК с учетом имеющихся средств.
МОДЕЛИРОВАНИЕ, ТРАНСПОРТ КИСЛОРОДА, РЕГУЛЯЦИЯ КРОВОТОКА
МОДЕЛИРОВАНИЕ, ТРАНСПОРТ КИСЛОРОДА, РЕГУЛЯЦИЯ КРОВОТОКА
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
