Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cherepovets State Un...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

База изображений номеров наземных транспортных средств

База изображений номеров наземных транспортных средств

Abstract

В данной статье представляется новая выборка размеченных номеров наземных транспортных средств (ТС) нескольких стран. База номеров содержит цветные и черно-белые изображения ТС и отдельные изображения номеров. Также имеются файлы с разметкой для каждой страны (BY.mat, KZ.mat, UA.mat), в которых содержится информация о номерах. Всего размеченных номеров ТС 8995 (65198 символов). В целях удобства просмотра, получения основной информации по разметке, а также возможности её редактирования было разработано программное обеспечение в среде Matlab (R2013a 8.1.0.604). На размеченной выборке были проведены тесты обобщающих способностей двух методов машинного обучения нейронной сети и метода многомерной интерполяции и аппроксимации на основе теории случайных функций

Keywords

ВЫБОРКА ДАННЫХ,РАСПОЗНАВАНИЕ АВТОМОБИЛЬНЫХ НОМЕРОВ,LICENSE PLATE RECOGNITION,КОМПЬЮТЕРНОЕ ЗРЕНИЕ,COMPUTER VISION,МАШИННОЕ ОБУЧЕНИЕ,MACHINE LEARNING,НЕЙРОННЫЕ СЕТИ,NEURAL NETWORKS,ИНТЕРПОЛЯЦИЯ И АППРОКСИМАЦИЯ,INTERPOLATION AND APPROXIMATION,СЛУЧАЙНЫЕ ФУНКЦИИ,RANDOM FUNCTION,DATABASE

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze