
In present work, the problem of multiprogrammed stabilization of the equilibrium positions for a quasi-linear system is considered. The equilibrium positions are very important (from the viewpoint of dynamic object simulation) functioning regimes of any dynamic system. The multiprogrammed controls which realized these regimes are constrained as the Hermits interpolating polynomials. In the paper, the theorem on sufficient conditions of the multiprogrammed stabilized control existence is proved and the illustrative example is given.
Рассматривается задача многопрограммной стабилизации положений равновесия квазилинейных стационарных систем. Положения равновесия являются важными (с точки зрения моделирования) режимами функционирования любой динамической системы. Многопрограммное управление, реализующее данные режимы, строится в виде интерполяционного полинома Эрмита. Доказана теорема о достаточных условиях существования многопрограммного стабилизирующего управления, приведён иллюстративный пример.
КВАЗИЛИНЕЙНАЯ СИСТЕМА, СТАБИЛИЗАЦИЯ, МНОГОПРОГРАММНОЕ УПРАВЛЕНИЕ, СТАЦИОНАРНАЯ СИСТЕМА, ПОЛОЖЕНИЕ РАВНОВЕСИЯ
КВАЗИЛИНЕЙНАЯ СИСТЕМА, СТАБИЛИЗАЦИЯ, МНОГОПРОГРАММНОЕ УПРАВЛЕНИЕ, СТАЦИОНАРНАЯ СИСТЕМА, ПОЛОЖЕНИЕ РАВНОВЕСИЯ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
