Powered by OpenAIRE graph
Found an issue? Give us feedback

Оптимізація автоскейлінгу в Kubernetes за допомогою штучного інтелекту

Оптимізація автоскейлінгу в Kubernetes за допомогою штучного інтелекту

Abstract

Дипломна робота: 146 с., 37 рис., 11 табл., 44 посилань, 1 додаток. Об’єктом дослідження є процес масштабування ресурсів у Kubernetes кластерах. Предметом дослідження є моделі прогнозування навантаження для задачі оптимізації масштабування обчислювальних ресурсів у середовищі Kubernetes. Метою роботи є оптимізація автоскейлінгу в Kubernetes шляхом впровадження моделей машинного навчання, здатних прогнозувати навантаження на CPU, з метою забезпечення ефективнішого управління обчислювальними ресурсами. Kubernetes є основою сучасної хмарної інфраструктури, однак класичні механізми автоскейлінгу, як HPA чи VPA, працюють за реактивним принципом та мають затримки у масштабуванні, що призводить до перевантаження або перевитрати ресурсів. У цій роботі запропоновано проактивний підхід, що ґрунтується на прогнозуванні навантаження за допомогою нейронних мереж. Було проведено порівняльний аналіз архітектур, оброблено реальний часовий ряд метрик навантаження, та запропоновано архітектуру для інтеграції моделі у середовище Kubernetes.

Keywords

проактивне масштабування, автоскейлінг, gru, штучний інтелект, load forecasting, cloud computing, kan, прогнозування навантаження, нейронні мережі, rnn, kubernetes, artificial intelligence, neural networks, lstm, хмарні обчислення, fan, proactive autoscaling, кубернетес, autoscaling, transformer

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green