
Дипломна робота: 146 с., 37 рис., 11 табл., 44 посилань, 1 додаток. Об’єктом дослідження є процес масштабування ресурсів у Kubernetes кластерах. Предметом дослідження є моделі прогнозування навантаження для задачі оптимізації масштабування обчислювальних ресурсів у середовищі Kubernetes. Метою роботи є оптимізація автоскейлінгу в Kubernetes шляхом впровадження моделей машинного навчання, здатних прогнозувати навантаження на CPU, з метою забезпечення ефективнішого управління обчислювальними ресурсами. Kubernetes є основою сучасної хмарної інфраструктури, однак класичні механізми автоскейлінгу, як HPA чи VPA, працюють за реактивним принципом та мають затримки у масштабуванні, що призводить до перевантаження або перевитрати ресурсів. У цій роботі запропоновано проактивний підхід, що ґрунтується на прогнозуванні навантаження за допомогою нейронних мереж. Було проведено порівняльний аналіз архітектур, оброблено реальний часовий ряд метрик навантаження, та запропоновано архітектуру для інтеграції моделі у середовище Kubernetes.
проактивне масштабування, автоскейлінг, gru, штучний інтелект, load forecasting, cloud computing, kan, прогнозування навантаження, нейронні мережі, rnn, kubernetes, artificial intelligence, neural networks, lstm, хмарні обчислення, fan, proactive autoscaling, кубернетес, autoscaling, transformer
проактивне масштабування, автоскейлінг, gru, штучний інтелект, load forecasting, cloud computing, kan, прогнозування навантаження, нейронні мережі, rnn, kubernetes, artificial intelligence, neural networks, lstm, хмарні обчислення, fan, proactive autoscaling, кубернетес, autoscaling, transformer
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
