Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Інтелектуальна система багатокласової класифікації на основі регуляризованого бустінгу

Інтелектуальна система багатокласової класифікації на основі регуляризованого бустінгу

Abstract

Дипломнa робота: 96 сторінки, 12 рисунки, 6 таблиць, 1 додаток, 26 джерела. Метою даної дипломної роботи є розробка та реалізація інтелектуальної системи багатокласової класифікації на основі регуляризованого бустінгу. Робота спрямована на вивчення та вдосконалення методів класифікації для вирішення складних завдань, де необхідно розподілити об'єкти на багато класів. Актуальність теми - багатокласова класифікація є важливим завданням у сфері машинного навчання та аналізу даних. Зростання обсягів даних та складність проблем, що потребують розподілу об'єктів на багато класів, створюють потребу у розробці нових ефективних методів класифікації. Регуляризований бустінг є одним з потужних інструментів, який дозволяє досягти високої точності та здатності до узагальнення. Об'єкт дослідження: Об'єктом дослідження є інтелектуальна система багатокласової класифікації. Предмет дослідження: Предметом дослідження є регуляризований бустінг та його застосування в контексті багатокласової класифікації. В роботі розроблено програмний продукт на мові програмування Python.

Keywords

xgboost, machine learning, регуляризований бустінг, інтелектуальна система, regularized boosting, машинне навчання, multiclass classification, intelligent system, багатокласова класифікація, оцінка продуктивності, performance evaluation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green