
Дипломнa робота: 96 сторінки, 12 рисунки, 6 таблиць, 1 додаток, 26 джерела. Метою даної дипломної роботи є розробка та реалізація інтелектуальної системи багатокласової класифікації на основі регуляризованого бустінгу. Робота спрямована на вивчення та вдосконалення методів класифікації для вирішення складних завдань, де необхідно розподілити об'єкти на багато класів. Актуальність теми - багатокласова класифікація є важливим завданням у сфері машинного навчання та аналізу даних. Зростання обсягів даних та складність проблем, що потребують розподілу об'єктів на багато класів, створюють потребу у розробці нових ефективних методів класифікації. Регуляризований бустінг є одним з потужних інструментів, який дозволяє досягти високої точності та здатності до узагальнення. Об'єкт дослідження: Об'єктом дослідження є інтелектуальна система багатокласової класифікації. Предмет дослідження: Предметом дослідження є регуляризований бустінг та його застосування в контексті багатокласової класифікації. В роботі розроблено програмний продукт на мові програмування Python.
xgboost, machine learning, регуляризований бустінг, інтелектуальна система, regularized boosting, машинне навчання, multiclass classification, intelligent system, багатокласова класифікація, оцінка продуктивності, performance evaluation
xgboost, machine learning, регуляризований бустінг, інтелектуальна система, regularized boosting, машинне навчання, multiclass classification, intelligent system, багатокласова класифікація, оцінка продуктивності, performance evaluation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
