Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Застосування алгоритмiв машинного навчання для детекцiї шкiдливого програмного забезпечення через аналiз PE-заголовкiв

Застосування алгоритмiв машинного навчання для детекцiї шкiдливого програмного забезпечення через аналiз PE-заголовкiв

Abstract

Враховуючи зростання кіберзагроз, розробка методів штучного інтелекту для виявлення шкідливого програмного забезпечення є критичною. Ми розглядаємо різні техніки, такі як статичний аналіз, хешування та класифікація, для ідентифікації потенційно шкідливих файлів. Основні результати включають розробку надійної моделі, здатної виявляти шкідливі програми з високою точністю, а також обговорення викликів, пов’язаних з обфускацією та поліморфізмом шкідливого ПЗ. Робота підкреслює потенціал машинного навчання як важливого інструменту у сфері кібербезпеки.

Keywords

автоматизоване виявлення, Штучний інтелект, алгоритми машинного навчання, шкідливе програмне забезпечення, виявлення шкідливого програмного забезпечення, машинне навчання, кібербезпека, захист від шкідливих програм

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green