
Концепция ≪белого шума≫, первоначально построенная в конечномерных пространствах, переносится в бесконечномерные пространства. Цель переноса – развитие теории стохастических уравнений соболевского типа и разработка приложений, имеющих практическую значимость. Для достижения цели вводится производная Нельсона – Гликлиха и строятся пространства ≪шумов≫. Уравнения соболевского типа с относительно p-ограниченными операторами рассматриваются в пространствах дифференцируемых "шумов", причем доказывается существование и единственность их классических решений. В качестве приложения рассматривается стохастическое уравнение Баренблатта – Желтова – Кочиной в ограниченной области с однородным граничным условием Дирихле и начальным условием Шоуолтера – Сидорова. The concept of "white noise", initially established in finite-dimensional spaces, has been transfered to infinite-dimensional spaces. The goal of this transition is to develop the theory of stochastic Sobolev type equations and to elaborate applications of practical value. The derivative of Nelson – Gliklikh is entered to reach this goal, as well as the spaces of "noises" are developed. The equations of Sobolev type with relatively bounded operators are considered in the spaces of differentiable "noises". Besides, the existence and uniqueness of their classical solutions are proved. A stochastic equation of Barenblatt – Zheltov – Kochina is considered as an application in bounded domain with homogeneous boundary condition of Dirichlet and initial condition of Showalter – Sidorov. Георгий Анатольевич Свиридюк, доктор физико-математических наук, профессор, заведующий кафедрой ≪Уравнения математической физики≫, Южно-Уральский государственный университет (г. Челябинск, Российская Федерация),sviridyuk@susu.ac.ru. Наталья Александровна Манакова, кандидат физико-математических наук, доцент, кафедра ≪Уравнения математической физики≫, Южно-Уральский государственный университет (г. Челябинск, Российская Федерация), manakova@susu.ac.ru. G.A. Sviridyuk, South Ural State University, Chelyabinsk, Russian Federation,sviridyuk@susu.ac.ru, N.A. Manakova, South Ural State University, Chelyabinsk, Russian Federation,manakova@susu.ac.ru
"белый шум", stochastic equation of Barenblatt–Zheltov–Kochina, УДК 517.98, the Sobolev type equations, Wiener process, пространство "шумов", space of "noise", ГРНТИ 27.35, винеровский процесс, стохастическое уравнение Баренблатта – Желтова – Кочиной, УДК 517.95, уравнения соболевского типа, производная Нельсона - Гликлиха, "white noise", Nelson – Gliklikh derivative
"белый шум", stochastic equation of Barenblatt–Zheltov–Kochina, УДК 517.98, the Sobolev type equations, Wiener process, пространство "шумов", space of "noise", ГРНТИ 27.35, винеровский процесс, стохастическое уравнение Баренблатта – Желтова – Кочиной, УДК 517.95, уравнения соболевского типа, производная Нельсона - Гликлиха, "white noise", Nelson – Gliklikh derivative
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
