Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South Ural State Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Анализ влияния прагматического компонента и структуры медиатекста на речевую агрессию в читательских комментариях

Authors: Samkova, M.A.;

Анализ влияния прагматического компонента и структуры медиатекста на речевую агрессию в читательских комментариях

Abstract

Самкова Мария Андреевна, кандидат филологических наук, доцент кафедры теории и практики английского языка, Челябинский государственный университет (г.Челябинск), _degi_@mail.ru Maria A. Samkova, Candidate of Philological Science, assistant professor, chair of Theory and Practice of the English Language, Chelyabinsk State University (Chelyabinsk), _degi_@mail.ru В данной статье проводится регрессионный и прагмалингвистический анализ с целью определить степень воздействия прагматического компонента и структуры на восприятие медиатекста читателями и выявить, каким образом дезинформирующие элементы в медиатексте влияют на речевую агрессию в читательских комментариях. В результате регрессионного анализа сформирована и оценена статистическая информация о результирующем влиянии пространственно-временных характеристик и прагматически значимых элементов на процент читательских комментариев, содержащих речевую агрессию. Регрессионная модель выявила сильную функциональную зависимость между модальными глаголами в медиатексте и речевой агрессией в читательских комментариях. Последующий прагмалингвистический анализ подтвердил, что читатели агрессивно реагируют на медиатексты, в которых присутствуют модальные глаголы и другие элементы, привносящие неопределенность и эмоциональностьв текст. Данные медиатексты читатели относят к фейковым новостям. Анализ медиатекста с помощью регрессионного и прагмалингвистичского анализа позволяет выявить причинно-следственные отношения между элементами медиатекста и силу их воздействия на восприятие. In this research, regression and pragmalinguistic analyses are conducted to determine the degree of the media text influence on the readers’ perception and to identify how disinformation in the media text correlates with the verbal aggression in readers’ comments. The regression analysis results in statistical data on the influence of spatial-temporal characteristics and pragmatically significant elements on the percentage of readers’ comments containing verbal aggression. The regression model revealed a strong functional dependence between the usage of modal verbs in the media texts and verbal aggression in the readers’ comments. The pragmalinguistic analysis proved that readers respond aggressively to media texts which contain modal verbs and other elements that make the media text uncertain and emotional. The readers assume such media texts are fake news. The media text analysis which includes the application of the regression model and the pragmalinguistic analysis identifies the cause-and-effect relationships between the components of a media text and their impact on readers’ perception.

Keywords

pragmalinguistic analysis, media text, disinformation, медиатекст, прагмалингвистический анализ, читательский комментарий, УДК 81'42, readers’ comments, регрессионный анализ, дезинформация, regression analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green